Skip to main content

Advertisement

Log in

Effect of thermodisinfection on mechanic parameters of cancellous bone

  • Full Length Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Revision surgery of joint replacements is increasing and raises the demand for allograft bone since restoration of bone stock is crucial for longevity of implants. Proceedings of bone grafts influence the biological and mechanic properties differently. This study examines the effect of thermodisinfection on mechanic properties of cancellous bone. Bone cylinders from both femoral heads with length 45 mm were taken from twenty-three 6–8 months-old piglets, thermodisinfected at 82.5 °C according to bone bank guidelines and control remained native. The specimens were stored at −20 °C immediately and were put into 21 °C Ringer’s solution for 3 h before testing. Shear and pressure modulus were tested since three point bending force was examined until destruction. Statistical analysis was done with non-parametric Wilcoxon, t test and SPSS since p < 0.05 was significant. Shear modulus was significantly reduced by thermodisinfection to 1.02 ± 0.31 GPa from 1.28 ± 0.68 GPa for unprocessed cancellous bone (p = 0.029) since thermodisinfection reduced pressure modulus not significantly from 6.30 ± 4.72 GPa for native specimens to 4.97 ± 2.23 GPa and maximum bending force was 270.03 ± 116.68 N for native and 228.80 ± 70.49 N for thermodisinfected cancellous bone. Shear and pressure modulus were reduced by thermodisinfection around 20 % and maximum bending force was impaired by about 15 % compared with native cancellous bone since only the reduction of shear modulus reached significance. The results suggest that thermodisinfection similarly affects different mechanic properties of cancellous bone and the reduction of mechanic properties should not relevantly impair clinical use of thermodisinfected cancellous bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arts J, Verdonshot N, Buma P, Schreurs B (2006) Larger bone graft size and washing of bone grafts prior to impaction enhances the initial stability of cemented cups. Acta Orthop 77:227–233

    Article  PubMed  Google Scholar 

  • Banse X, Devogelaer JP, Lafosse A, Sims TJ, Grynpas M, Bailey AJ (2002) Cross-link profile of bone collagen correlates with structural organization of trabeculae. Bone 31:70–76

    Article  CAS  PubMed  Google Scholar 

  • Bolder S, Schreurs B, Verdonshot N, van Unen J, Gardeniers J, Slooff T (2003a) Particle size of bone graft and method of impaction affect stability of cemented cups. Acta Orthop Scand 74:652–657

    Article  PubMed  Google Scholar 

  • Bolder S, Verdonshot N, Schreurs B, Puma P (2003b) The initial stability of cemented acetabular cups can be augmented by mixing morsellized bone grafts with tricalciumphosphate hydroxyapatite particles in bone impaction grafting. J Arthroplasty 18:1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Bolland B, New A, Madabhushi S, Oreffo R, Dunlop D (2007) Vibration-assisted bone graft-compaction in impaction bone grafting of the femur. J Bone Joint Surg 89-B:686–692

    Article  Google Scholar 

  • Brewster et al (1999) Mechanical considerations in impaction bone grafting. J Bone Joint Surg 81-B:118–124

    Article  Google Scholar 

  • Bronsema E, te Stroet MA, Zengerink M, van Kampen A, Schreurs BW (2014) Impaction bone grafting and a cemented cup after acetabular fracture. Int Orthop 38:2441–2446

    Article  PubMed  Google Scholar 

  • Burr DB (2002) The contribution of the organic matrix to bone’s material properties. Bone 31:8–11

    Article  CAS  PubMed  Google Scholar 

  • Cummins F, O´Reilly P, Flannery O, Kelly D, Kenny P (2011) Defining the impaction frequency and threshold force required for femoral impaction grafting in revision hip arthroplasty. Acta Orthop 82:433–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding H, Mao Y, Yu B, Zhu Z, Li H, Yu B, Huang J (2015) The use of morselized allografts without impaction and cemented cage support in acetabular revision surgery: a 4–9 year follow-up. J Orthop Surg Res 23:77

    Article  Google Scholar 

  • Dunlop DG, Brewster NT, Madabhushi SPG, Usmani AS, Pankaj P, Howie CR (2003) Techniques to improve the shear strength of impacted bone graft. J Bone Joint Surg 85-A:639–646

    PubMed  Google Scholar 

  • Fölsch C, Mittelmeier W, Bilderbeek U, Timmesfeld N, von Garrel T, Peter Matter H (2012) Effect of storage temperature on allograft bone. Transfus Med Hemother 39:36–40

    Article  PubMed  Google Scholar 

  • Fölsch C, Pinkernell R, Stiletto R (2013) Biocompatibility of polymer-bioglass cement Cortoss®: in vitro test with the MG63 cell model. Orthopäde 42:170–176

    Article  PubMed  Google Scholar 

  • Fölsch C, Mittelmeier W, von Garrel T, Bilderbeek U, Timmesfeld N, Pruss A, Matter HP (2015) Influence of thermodisinfection and duration of cryopreservation at different temperatures on pull out strength of cancellous bone. Cell Tissue Bank 16:73–81

    Article  PubMed  Google Scholar 

  • Fosse L, Ronningen H, Lund-Larsen J, Benum P, Grande L (2004) Impacted bone stiffness measured during construction of morsellised bone samples. J Biomech 37:1757–1766

    Article  CAS  PubMed  Google Scholar 

  • Fosse L, Muller S, Ronningen H, Irgens F, Benum P (2006a) Viscoelastic modeling of impacted morsellised bone accurately describes unloading behaviour: An experimental study of stiffness moduli and recoil properties. J Biomech 39:2295–3302

    Article  PubMed  Google Scholar 

  • Fosse L, Ronningen H, Benum P, Sandven R (2006b) Influence of water and fat content on compressive stiffness properties of impacted morsellized bone. Acta Orthop 1:15–22

    Article  Google Scholar 

  • Friesecke C, Plutat J, Block A (2005) Revision arthroplasty with use of a total femur prosthesis. J Bone Joint Surg 87:2693–2701

    Article  CAS  PubMed  Google Scholar 

  • Fujishiro T, Nishikawa T, Niikura T, Takikawa S, Nishiyama T, Mizono K, Yoshiya S, Kurosaka M (2005) Impaction bone grafting with hydroxyapatite. Acta Orthop 76:550–554

    Article  PubMed  Google Scholar 

  • Fujishiro T, Nishikawa T, Niikura T, Takikawa S, Saegusa Y, Kurosaka M, Bauer TW (2008) Histologic analysis of allograft mixed with hydroxyapatite-tricalcium phosphate used in revision femoral impaction bone grafting. Orthopedics 31:277

    Article  PubMed  Google Scholar 

  • Garnier KB, Dumas R, Rumelhart C, Arlot ME (1999) Mechanical characterization in shear of human femoral cancellous bone: torsion and shear tests. Med Eng Phys 21:641–649

    Article  Google Scholar 

  • Gehrke T, Gebauer M, Kendoff D (2013) Femoral stem impaction grafting: extending the role of cement. Bone Joint 95-B(11 Suppl A):92–94

    Article  CAS  Google Scholar 

  • Giesen EBW, Lamerigts NMP, Verdonshot N, Buma P, Schreurs BW, Huiskes R (1999) Mechanical characteristics of impacted morsellised grafts used in revision of total hip arthroplasty. J Bone Joint Surg 81-B(6):1052–1057

    Article  Google Scholar 

  • Gilbody J, Taylor C, Bartlett GE, Whitehouse SL, Hubble MJW, Timperley AJ, Howell JR, Wilson MJ (2014) Clinical and radiographic outcomes of acetabular impaction grafting without cage reinforcement for revision hip replacement: a minum 10-year follow-up study. Bone Joint 96-B:188–194

    Article  CAS  Google Scholar 

  • Goldberg VM (2000) Selection of bone grafts for revision total hip arhroplasty. Clin Orthop Rel Res 381:68–76

    Article  Google Scholar 

  • Haddad F, Rayn F (2009) The role of impaction grafting: the when and how. Orthopedics 32(9). doi: 10.3928/01477447-20090728-19

  • Hailer NP, Garellick G, Kärrholm J (2010) Uncemented and cemented primary total hip arthroplasty in the Swedish hip arthroplasty register. Acta Orthop 81:34–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Halliday B, English H, Timperley A, Gie G, Ling R (2003) Femoral impaction grafting with cement in revision total hip replacement. Evolution of the technique and results. J Bone Joint Surg 85-B:809–817

    Google Scholar 

  • Harrison NM, McDonnell P, Mullins L, Wilson N, O´Mahoney D, McHugh PE (2013) Failure modeling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach. Biomech Model Mechanobiol 12:225–241

    Article  PubMed  Google Scholar 

  • Heyligers C, Schreurs B, van Haaren E (2014) Femoral revision impaction bone grafting and a cemented polished tapered stem. Oper Orthop Traumatol 26:156–161

    Article  CAS  PubMed  Google Scholar 

  • Holt G, Hook S, Hubble M (2011) Revision total hip arthroplasty: the femoral side using cemented implants. Int Orthop 35:267–273

    Article  PubMed  Google Scholar 

  • Holton C, Bobak P, Wilcox R, Jin Z (2013) Impaction grafted bone chip size effect on initial stability in an acetabular model: mechanical evaluation. J Orthop 10:177–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim MS, Raja S, Haddad FS (2013) Acetabular impaction bone grafting in total hip replacement. J Bone Joint Surg 95-B(Suppl A):98–102

    Article  CAS  Google Scholar 

  • Jahnke A, Jakubowitz E, Ishaque BA, Rickert M, Bischel O (2015) Influence of cerclages on primary stability of tumor megaprostheses subjected to distal femur defects. Injury. 2015 Oct 23. pii: S0020-1383(15)00633-6. doi: 10.1016/j.injury.2015.10.031

  • Jakubowitz E (2013) Influence of stem design on the primary stability of megaprostheses of the proximal femur. Int Orthop 8:1877–1883

    Google Scholar 

  • Kaplan SJ, Hayes WC, Stone JL, Beaupré GS (1985) Tensile strength of bovine trabecular bone. J Biomech 18:723–727

    Article  CAS  PubMed  Google Scholar 

  • Klinge S (2013) Determination of the geometry of the RVE for cancellous bone using the effective complex shear modulus. Biomech Model Mechanobiol 12:401–412

    Article  PubMed  Google Scholar 

  • Lunde K, Kaehler N, Ronningen H, Fosse L (2008) Pressure during compaction of morsellised bone gives an increase in stiffness: an in vitro study. J Biomech 41:231–234

    Article  PubMed  Google Scholar 

  • Malkani A (1996) Femoral component revision using impacted morsellized cancellous graft: a biomechanical study of implant stability. J Bone Joint 78-B:973–978

    Article  Google Scholar 

  • Malkani A, Voor M, Hellmann E, Khalily C, Capello W, Wang M, Bauer T, Crawford C (2005) Histologic and mechanical evaluation of impaction grafting for femoral component revision in a goat model. Orthopedics 28:49–58

    PubMed  Google Scholar 

  • Matsunga S, Naito H, Tamatsu Y, Takano N, Abe S, Ide Y (2013) Consideration of shear modulus in biomechanical analysis of peri-implant jaw bone: accuracy verification using image-based multi-scale simulation. Dent Mater J 32:425–432

    Article  Google Scholar 

  • McNamara IR (2010) Impaction bone grafting in revision hip surgery: past, present and future. Cell Tissue Bank 11:57–73

    Article  PubMed  Google Scholar 

  • McNamara I, Rayment A, Brooks R, Best S, Rushton N (2012) The effect of the addition of hydroxyapatite graft substitutes upon the hoop strain and subsequent subsidence of a femoral model during impaction bone grafting. J Mech Behav Biomed Mater 5:238–246

  • Nazarian A, Meier D, Müller R, Snyder BD (2009) Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing. J Orthop Res 27:1667–1674

    Article  PubMed  Google Scholar 

  • Oakes DA, Cabanela ME (2006) Impaction bone grafting for revision hip arthroplasty: biology and clinical applications. J Am Acad Orthop Surg 14:620–628

    Article  PubMed  Google Scholar 

  • Oakley J, Kuiper JH (2006) Factors affecting the cohesion of impaction bone graft. J Bone Joint 88-B:828–831

    Article  Google Scholar 

  • Odgaard A, Linde F (1991) The underestimating of Young’s modulus in compressive testing of cancellous bone specimens. J Biomech 24:691–698

    Article  CAS  PubMed  Google Scholar 

  • Ohashi H, Kobayashi A, Kadoya Y, Yamao Y (2000) Effect of particles and interface conditions on fibrous tissue interposition between bone and implant. A particle challenge model in rabbit. J Mater Sci Mater Med 11:255–259

    Article  CAS  PubMed  Google Scholar 

  • Ornstein E, Lindner L, Ranstam J, Lewold S, Eisler T, Torper M (2009) Femoral impaction bone grafting with the Exeter stem—Swedish experience. J Bone Bone Joint 91-B:441–446

    Article  Google Scholar 

  • Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17(4 Suppl):365S–371S

    CAS  PubMed  Google Scholar 

  • Perilli E, Baleani M, Öhman C, Fognani R, Baruffaldi F, Vicecoti M (2008) Dependence of mechanical compressive strength on local variations in microarchitecture in canellous bone of proximal human femur. J Biomech 41:438–446

    Article  CAS  PubMed  Google Scholar 

  • Pruss A, Seibold M, Benedix F, Frommelt L, von Garrel T, Gürtler L, Dörffel Y, Pauli G, Göbel UB (2003) Validation of the “Marburg bone bank system” for thermodisinfection of allogeneic femoral head transplants using selected bacteria, fungi and spores. Biologicals 31:287–294

    Article  PubMed  Google Scholar 

  • Putzer D, Coraca-Huber D, Wurm A, Schmoelz W, Nogler M (2010) Optimizing the grain size distribution of allograft bone impaction grafting. J Orthop Res 8:1024–1029

    Google Scholar 

  • Putzer D, Mayr E, Haid C, Reinthaler A, Nogler M (2011) Impaction bone grafting. J Bone Joint Surg 93-B:1049–1053

    Article  Google Scholar 

  • Revell PA, Braden M, Freeman MAR (1998) Review of the biological response to a novel bone cement containing poly(ethyl methacrylate) and n-butyl methacrylate. Biomaterials 19:1579–1586

    Article  CAS  PubMed  Google Scholar 

  • Robinson MC, Fernlund G, Meek R, Masri B, Duncan C, Oxland T (2005) Structural characteristics of impaction allografting for revision total hip arthroplasty. Clin Biomech 20:853–855

    Article  Google Scholar 

  • Schreurs BW, Arts C, Verdonshot N, Buma P, Slooff JJH, Gardeniers JWM (2005) Femoral component revision with use of impaction bone-grafting and a cemented polished stem. J Bone Joint Surg 87-A(11):2499–2507

    Article  Google Scholar 

  • Shimuzu K, Masumi S, Yano H, Fukunaga T (1999) Revascularization and new bone formation in heat-treated bone grafts. Arch Orthop Trauma Surg 119:57–61

    Article  Google Scholar 

  • Slooff T, Huiskes R, van Horn J, Lemmens AJ (1984) Bone grafting in total hip replacement for acetabular protrusion. Acta Orthop 55:593–596

    Article  CAS  Google Scholar 

  • teStroet M, Rijnen WHC, Gardeniers JWM, van Kampen A, Schreurs BW (2015) The outcome of femoral component revision arthroplasty with impaction allograft bone grafting and a cemented polished Exeter stem: a prospective cohort study of 208 revision arthroplasties with a mean follow-up of 10 years. Bone Joint 97:771–779

    Article  Google Scholar 

  • Toms AD, Barker RL, Jones RS, Kuiper JH (2004) Impaction bone-grafting in revision joint replacement surgery. J Bone Joint Surg 86:2050–2060

    PubMed  Google Scholar 

  • Ullmark G (2000) Bigger size and defatting of bone chips will increase cup stability. Arch Orthop Traum Surg 120:445–447

    Article  CAS  Google Scholar 

  • Ullmark G, Linder L (1998) Histology of the femur after cancellous impaction grafting using a Charnley prosthesis. Arch Orthop Trauma Surg 117:170–172

    Article  CAS  PubMed  Google Scholar 

  • van Haaren E, Smit T, Phipps K, Wuisman P, Blunn G, Heyligers I (2005) Tricalcium-phosphate and hydroxyapatite bone-graft extender for use in impaction grafting revision surgery. J Bone Joint Surg 87-B:267–271

    Article  Google Scholar 

  • Verdonshot N, van Hal C, Schreurs B, Buma P, Huiskes R, Slooff T (2001) Time-dependent mechanical properties of HA/TCP particles in relation to morsellized bone grafts for use in impaction grafting. J Biomed Mater Res 58:599–604

    Article  Google Scholar 

  • Voor MJ, Nawab A, Malkani AL, Ullrich CR (2000) Mechanical properties of compacted morselized cancellous bone graft using one-dimensional consolidation testing. J Biomech 33:1683–1688

    Article  CAS  PubMed  Google Scholar 

  • Voor MJ, White JE, Grieshaber JE, Malkani AL, Ullrich CR (2004) Impacted morselized cancellous bone: mechanical effects of defatting and augmentation with fine hydroxyapatite particles. J Biomech 37:1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Voor M, Madsen R, Malkani A, Togawa D, Bauer TW (2008) Impaction grafting for femoral component revision in a goat model using washed morselized cancellous allograft. Orthopedics 31:443–450

    Article  PubMed  Google Scholar 

  • Wachter NJ, Augat P, Mentzel M, Sarkar MR, Krischak GD, Kinzl L, Claes LE (2001) Predictive value of bone mineral density and morphology determined by peripheral quantitative computed tomography for cancellous bone strength of the proximal femur. Bone 28:133–139

    Article  CAS  PubMed  Google Scholar 

  • Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31:90–95

    Article  CAS  PubMed  Google Scholar 

  • Yeni YN, Hou FJ, Vashishth D, Fyhrie DP (2001) Trabecular shear stress in human vertebral cancellous bone: intra- and inter- individual variations. J Biomech 34:1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Yeni YN, Dong XN, Fyhrie DP, Les CM (2004) The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle. Biomed Mater Eng 14:303–310

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Fölsch.

Ethics declarations

Conflict of interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fölsch, C., Kellotat, A., Rickert, M. et al. Effect of thermodisinfection on mechanic parameters of cancellous bone. Cell Tissue Bank 17, 427–437 (2016). https://doi.org/10.1007/s10561-016-9567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-016-9567-4

Keywords

Navigation