Skip to main content
Log in

Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Objective

Folate is involved in the one-carbon metabolism that plays an essential role in the synthesis, repair, and methylation of DNA. We examined whether child’s germline genetic variation in the folate pathway is associated with childhood acute lymphoblastic leukemia (ALL), and whether periconception maternal folate and alcohol intake modify the risk.

Methods

Seventy-six single nucleotide polymorphisms (SNPs), including 66 haplotype-tagging SNPs in 10 genes (CBS, DHFR, FOLH1, MTHFD1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, and TYMS), were genotyped in 377 ALL cases and 448 controls. Log-additive associations between genotypes and ALL risk were adjusted for age, sex, Hispanic ethnicity (when appropriate), and maternal race.

Results

Single and haplotype SNPs analyses showed statistically significant associations between SNPs located in (or adjacent to) CBS, MTRR, TYMS/ENOFS, and childhood ALL. Many regions of CBS were associated with childhood ALL in Hispanics and non-Hispanics (p < 0.01). Levels of maternal folate intake modified associations with SNPs in CBS, MTRR, and TYMS.

Conclusion

Our data suggest the importance of genetic variability in the folate pathway and childhood ALL risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Bray F, Pisani P, Parkin DM (2004) Globocan 2002—Cancer incidence, mortality and prevalence worldwide (IARC CancerBase No. 5, version 2.0)

  2. Parkin DM, Whelan SL, Ferlay J, Storm H (2005) Cancer in five continents, vol I to VIII (IARC CancerBase No. 7)

  3. Greaves M (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 6:193–203

    Article  PubMed  CAS  Google Scholar 

  4. Friso S, Choi SW (2005) Gene-nutrient interactions in one-carbon metabolism. Curr Drug Metab 6:37–46

    Article  PubMed  CAS  Google Scholar 

  5. Duthie SJ (1999) Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull 55:578–592

    Article  PubMed  CAS  Google Scholar 

  6. Thompson JR, Gerald PF, Willoughby ML, Armstrong BK (2001) Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet 358:1935–1940

    Article  PubMed  CAS  Google Scholar 

  7. Wiemels JL, Smith RN, Taylor GM, Eden OB, Alexander FE, Greaves MF (2001) Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci USA 98:4004–4009

    Article  PubMed  CAS  Google Scholar 

  8. Franco RF, Simoes BP, Tone LG, Gabellini SM, Zago MA, Falcao RP (2001) The methylenetetrahydrofolate reductase C677T gene polymorphism decreases the risk of childhood acute lymphocytic leukaemia. Br J Haematol 115:616–618

    Article  PubMed  CAS  Google Scholar 

  9. Krajinovic M, Lamothe S, Labuda D et al (2004) Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood 103:252–257

    Article  PubMed  CAS  Google Scholar 

  10. Gast A, Bermejo JL, Flohr T et al (2007) Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case-control study. Leukemia 21:320–325

    Article  PubMed  CAS  Google Scholar 

  11. Bailey LB (2003) Folate, methyl-related nutrients, alcohol, and the MTHFR 677C→T polymorphism affect cancer risk: intake recommendations. J Nutr 133:3748S–3753S

    PubMed  CAS  Google Scholar 

  12. Thirumaran RK, Gast A, Flohr T et al (2005) MTHFR genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia [letter]. Blood 106:2590–2591

    Article  PubMed  CAS  Google Scholar 

  13. Milne E, de Klerk NH, van Bockxmeer F et al (2006) Is there a folate-related gene-environment interaction in the etiology of childhood acute lymphoblastic leukemia? Int J Cancer 119:229–232

    Article  PubMed  CAS  Google Scholar 

  14. Zintzaras E, Koufakis T, Ziakas PD, Rodopoulou P, Giannouli S, Voulgarelis M (2006) A meta-analysis of genotypes and haplotypes of methylenetetrahydrofolate reductase gene polymorphisms in acute lymphoblastic leukemia. Eur J Epidemiol 21:501–510

    Article  PubMed  CAS  Google Scholar 

  15. Pereira TV, Rudnicki M, Pereira AC, Pombo-de-Oliveira MS, Franco RF (2006) 5, 10-Methylenetetrahydrofolate reductase polymorphisms and acute lymphoblastic leukemia risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15:1956–1963

    Article  PubMed  CAS  Google Scholar 

  16. Alcasabas P, Ravindranath Y, Goyette G et al (2008) 5, 10-methylenetetrahydrofolate reductase (MTHFR) polymorphisms and the risk of acute lymphoblastic leukemia (ALL) in Filipino children. Pediatr Blood Cancer 51:178–182

    Article  PubMed  Google Scholar 

  17. Amorim MR, Zanrosso CW, Magalhaes IQ et al (2008) MTHFR 677C→T and 1298A→C polymorphisms in children with Down syndrome and acute myeloid leukemia in Brazil. Pediatr Hematol Oncol 25:744–750

    Article  PubMed  CAS  Google Scholar 

  18. Schnakenberg E, Mehles A, Cario G et al (2005) Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population. BMC Med Genet 6:23

    Article  PubMed  Google Scholar 

  19. Balta G, Yuksek N, Ozyurek E et al (2003) Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol 73:154–160

    Article  PubMed  CAS  Google Scholar 

  20. de Jonge R, Tissing WJ, Hooijberg JH et al (2009) Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood 113:2284–2289

    Article  PubMed  Google Scholar 

  21. Petra BG, Janez J, Vita D (2007) Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children. Leuk Lymphoma 48:786–792

    Article  PubMed  CAS  Google Scholar 

  22. Kamel AM, Moussa HS, Ebid GT, Bu RR, Bhatia KG (2007) Synergistic effect of methyltetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphism as risk modifiers of pediatric acute lymphoblastic leukemia. J Egypt Natl Canc Inst 19:96–105

    PubMed  Google Scholar 

  23. Lightfoot TJ, Johnston WT, Painter D et al (2010) Genetic variation in the folate metabolic pathway and risk of childhood leukemia. Blood 115:3923–3929

    Article  PubMed  CAS  Google Scholar 

  24. Yeoh AE, Lu Y, Chan JY et al (2010) Genetic susceptibility to childhood acute lymphoblastic leukemia shows protection in Malay boys: results from the Malaysia-Singapore ALL Study Group. Leuk Res 34:276–283

    Article  PubMed  CAS  Google Scholar 

  25. Gra OA, Glotov AS, Kozhekbaeva Z, Makarova OV, Nasedkina TV (2008) [Genetic polymorphism in GST, NAT2, and MTRR and susceptibility to childhood acute leukemia]. Mol Biol (Mosk) 42: 214–225 (Russian)

    Google Scholar 

  26. Koppen IJ, Hermans FJ, Kaspers GJ (2010) Folate related gene polymorphisms and susceptibility to develop childhood acute lymphoblastic leukaemia. Br J Haematol 148:3–14

    Article  PubMed  CAS  Google Scholar 

  27. Mason JB, Choi SW (2005) Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol 35:235–241

    Article  PubMed  CAS  Google Scholar 

  28. Ma X, Buffler PA, Layefsky M, Does MB, Reynolds P (2004) Control selection strategies in case-control studies of childhood diseases. Am J Epidemiol 159:915–921

    Article  PubMed  Google Scholar 

  29. Kwan ML, Block G, Selvin S, Month S, Buffler PA (2004) Food consumption by children and the risk of childhood acute leukemia. Am J Epidemiol 160:1098–1107

    Article  PubMed  Google Scholar 

  30. Bartley K, Metayer C, Selvin S, Ducore J, Buffler P (2010) Diagnostic X-rays and risk of childhood leukaemia. Int J Epidemiol 39:1628–1637

    Article  PubMed  Google Scholar 

  31. Hansen HM, Wiemels JL, Wrensch M, Wiencke JK (2007) DNA quantification of whole genome amplified samples for genotyping on a multiplexed bead array platform. Cancer Epidemiol Biomarkers Prev 16:1686–1690

    Article  PubMed  CAS  Google Scholar 

  32. Paynter RA, Skibola DR, Skibola CF, Buffler PA, Wiemels JL, Smith MT (2006) Accuracy of multiplexed Illumina platform-based single-nucleotide polymorphism genotyping compared between genomic and whole genome amplified DNA collected from multiple sources. Cancer Epidemiol Biomarkers Prev 15:2533–2536

    Article  PubMed  CAS  Google Scholar 

  33. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  34. The International HapMap Project (2003) Nature 426: 789–796

    Google Scholar 

  35. Packer BR, Yeager M, Burdett L, Koppen IJ, Hermans FJ, Kaspers GJ (2006) SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes. Nucleic Acids Res 34:D617–D621

    Article  PubMed  CAS  Google Scholar 

  36. Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  PubMed  CAS  Google Scholar 

  37. Chakraborty R, Weiss KM (1986) Frequencies of complex diseases in hybrid populations. Am J Phys Anthropol 70:489–503

    Article  PubMed  CAS  Google Scholar 

  38. Hanis CL, Chakraborty R, Ferrell RE, Schull WJ (1986) Individual admixture estimates: disease associations and individual risk of diabetes and gallbladder disease among Mexican-Americans in Starr County, Texas. Am J Phys Anthropol 70:433–441

    Article  PubMed  CAS  Google Scholar 

  39. Jensen CD, Block G, Buffler P, Ma X, Selvin S, Month S (2004) Maternal dietary risk factors in childhood acute lymphoblastic leukemia (United States). Cancer Causes Control 15:559–570

    Article  PubMed  Google Scholar 

  40. Yu Z, Schaid DJ (2007) Sequential haplotype scan methods for association analysis. Genet Epidemiol 31:553–564

    Article  PubMed  Google Scholar 

  41. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 53:79–91

    Article  PubMed  Google Scholar 

  42. Mathias RA, Gao P, Goldstein JL et al (2006) A graphical assessment of p-values from sliding window haplotype tests of association to identify asthma susceptibility loci on chromosome 11q. BMC Genet 7:38

    Article  PubMed  Google Scholar 

  43. Pereira AC, Schettert IT, Morandini Filho AA, Guerra-Shinohara EM, Krieger JE (2004) Methylenetetrahydrofolate reductase (MTHFR) c677t gene variant modulates the homocysteine folate correlation in a mild folate-deficient population. Clin Chim Acta 340:99–105

    Article  PubMed  CAS  Google Scholar 

  44. McDowell MA, Lacher DA, Pfeiffer CM, et al. (2008) Blood folate levels: the latest NHANES results. NCHS Data Brief, 1–8

  45. Semmler A, Simon M, Moskau S, Linnebank M (2008) Polymorphisms of methionine metabolism and susceptibility to meningioma formation: laboratory investigation. J Neurosurg 108:999–1004

    Article  PubMed  CAS  Google Scholar 

  46. Le Marchand L, Donlon T, Hankin JH, Kolonel LN, Wilkens LR, Seifried A (2002) B-vitamin intake, metabolic genes, and colorectal cancer risk (United States). Cancer Causes Control 13:239–248

    Article  PubMed  Google Scholar 

  47. Ott N, Geddert H, Sarbia M (2008) Polymorphisms in methionine synthase (A2756G) and cystathionine beta-synthase (844ins68) and susceptibility to carcinomas of the upper gastrointestinal tract. J Cancer Res Clin Oncol 134:405–410

    Article  PubMed  CAS  Google Scholar 

  48. Shen M, Rothman N, Berndt SI et al (2005) Polymorphisms in folate metabolic genes and lung cancer risk in Xuan Wei, China. Lung Cancer 49:299–309

    Article  PubMed  Google Scholar 

  49. Chadefaux B, Rethore MO, Raoul O et al (1985) Cystathionine beta synthase: gene dosage effect in trisomy 21. Biochem Biophys Res Commun 128:40–44

    Article  PubMed  CAS  Google Scholar 

  50. Kim HN, Kim YK, Lee IK et al (2009) Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leuk Res 33:82–87

    Article  PubMed  CAS  Google Scholar 

  51. Murtaugh MA, Curtin K, Sweeney C et al (2007) Dietary intake of folate and co-factors in folate metabolism, MTHFR polymorphisms, and reduced rectal cancer. Cancer Causes Control 18:153–163

    Article  PubMed  Google Scholar 

  52. Zhang FF, Terry MB, Hou L et al (2007) Genetic polymorphisms in folate metabolism and the risk of stomach cancer. Cancer Epidemiol Biomarkers Prev 16:115–121

    Article  PubMed  CAS  Google Scholar 

  53. Arasaradnam RP, Commane DM, Bradburn D, Mathers JC (2008) A review of dietary factors and its influence on DNA methylation in colorectal carcinogenesis. Epigenetics 3:193–198

    Article  PubMed  CAS  Google Scholar 

  54. Hung RJ, Hashibe M, McKay J et al (2007) Folate-related genes and the risk of tobacco-related cancers in Central Europe. Carcinogenesis 28:1334–1340

    Article  PubMed  CAS  Google Scholar 

  55. Liu N, Zhang K, Zhao H (2008) Haplotype-association analysis. Adv Genet 60:335–405

    Article  PubMed  Google Scholar 

  56. Kwan ML, Jensen CD, Block G, Hudes ML, Chu LW, Buffler PA (2009) Maternal diet and risk of childhood acute lymphoblastic leukemia. Public Health Rep 124:503–514

    PubMed  Google Scholar 

  57. Caudill MA, Le T, Moonie SA, Esfahani ST, Cogger EA (2001) Folate status in women of childbearing age residing in Southern California after folic acid fortification. J Am Coll Nutr 20:129–134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research could not have been conducted without the strong support from our clinical collaborators and participating hospitals which include: University of California Davis Medical Center (Dr. Jonathan Ducore), University of California San Francisco (Dr. Mignon Loh and Dr Katherine Matthay), Children’s Hospital of Central California (Dr. Vonda Crouse), Lucile Packard Children’s Hospital (Dr. Gary Dahl), Children’s Hospital Oakland (Dr. James Feusner), Kaiser Permanente Sacramento (Dr. Vincent Kiley), Kaiser Permanente Santa Clara (Dr. Carolyn Russo and Dr. Alan Wong), Kaiser Permanente San Francisco (Dr. Kenneth Leung), and Kaiser Permanente Oakland (Dr. Stacy Month), and the families of the study participants. We also acknowledge our collaborators at the California Department of Public Health, and the entire Northern California Childhood Leukemia Study staff for their effort and dedication. Financial support: Children With Leukemia, UK, grants 2005/027 and 2006/051; National Institute of Environmental Health Sciences, grants P42-ES04705 and R01 ES09137. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Metayer.

Additional information

C. Metayer and G. Scélo share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metayer, C., Scélo, G., Chokkalingam, A.P. et al. Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control 22, 1243–1258 (2011). https://doi.org/10.1007/s10552-011-9795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-011-9795-7

Keywords

Navigation