Skip to main content

Advertisement

Log in

MTHFR gene polymorphism and risk of myeloid leukemia: a meta-analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

An increasing body of evidence has shown that the amino acid changes at position 1298 might eliminate methylenetetrahydrofolate reductase (MTHFR) enzyme activity, leading to insufficient folic acid and subsequent human chromosome breakage. Epidemiological studies have linked MTHFR single-nucleotide polymorphism (SNP) rs1801131 to myeloid leukemia risk, with considerable discrepancy in their results. We therefore were prompted to clarify this issue by use of a meta-analysis. The search terms were used to cover the possible reports in the MEDLINE, Web of Knowledge, and China National Knowledge Infrastructure (CNKI) databases. Odds ratios were estimated to assess the association of SNP rs1801131 with myeloid leukemia risk. Statistical heterogeneity was detected using the Q-statistic and I 2 metric. Subgroup analysis was performed by ethnicity, histological subtype, and Hardy-Weinberg equilibrium (HWE). This meta-analysis of eight publications with a total of 1,114 cases and 3,227 controls revealed no global association. Nor did the subgroup analysis according to histological subtype and HWE show any significant associations. However, Asian individuals who harbored the CC genotype were found to have 1.66-fold higher risk of myeloid leukemia (odds ratio, 1.66; 95 % confidence interval, 1.10 to 2.49; P h = 0.342; I 2 = 0.114). Our meta-analysis has presented evidence supporting a possible association between the CC genotype of MTHFR SNP rs1801131 and myeloid leukemia in Asian populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bloomfield CD, Caligiury M. Molecular biology of leukemias. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 2389–404.

    Google Scholar 

  2. Rowley JD. The critical role of chromosome translocations in human leukemias. Annu Rev Genet. 1998;32:495–519.

    Article  CAS  PubMed  Google Scholar 

  3. Pui CH. Childhood leukaemias. 2nd ed. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  4. Gabert J et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003;17(12):2318–57.

    Article  CAS  PubMed  Google Scholar 

  5. Smith MT, Zhang L. Biomarkers of leukemia risk: benzene as a model. Environ Health Perspect. 1998;106 Suppl 4:937–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Robien K, Ulrich CM. 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol. 2003;157(7):571–82.

    Article  PubMed  Google Scholar 

  7. Blount BC et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997;94(7):3290–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Duthie SJ et al. Impact of folate deficiency on DNA stability. J Nutr. 2002;132(8 Suppl):2444S–9S.

    CAS  PubMed  Google Scholar 

  9. Franco RF et al. A second mutation in the methylenetetrahydrofolate reductase gene and the risk of venous thrombotic disease. Br J Haematol. 1999;105(2):556–9.

    Article  CAS  PubMed  Google Scholar 

  10. Goyette P et al. Human methylenetetrahydrofolate reductase: isolation of cDNA mapping and mutation identification. Nat Genet. 1994;7(4):551.

    CAS  PubMed  Google Scholar 

  11. Frosst P et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10(1):111–3.

    Article  CAS  PubMed  Google Scholar 

  12. Weisberg I et al. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169–72.

    Article  CAS  PubMed  Google Scholar 

  13. Skibola CF et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci U S A. 1999;96(22):12810–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. da Costa Ramos FJ et al. Association between the MTHFR A1298C polymorphism and increased risk of acute myeloid leukemia in Brazilian children. Leuk Lymphoma. 2006;47(10):2070–5.

    Article  PubMed  Google Scholar 

  15. Hur M et al. Methylenetetrahydrofolate reductase A1298C genotypes are associated with the risks of acute lymphoblastic leukaemia and chronic myelogenous leukaemia in the Korean population. Clin Lab Haematol. 2006;28(3):154–9.

    Article  CAS  PubMed  Google Scholar 

  16. Moon HW et al. MTHFR 677CC/1298CC genotypes are highly associated with chronic myelogenous leukemia: a case–control study in Korea. Leuk Res. 2007;31(9):1213–7.

    Article  CAS  PubMed  Google Scholar 

  17. Higgins JP et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed Central  PubMed  Google Scholar 

  18. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  19. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.

    CAS  PubMed  Google Scholar 

  20. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  PubMed  Google Scholar 

  21. Egger M et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lightfoot TJ et al. Genetic variation in the folate metabolic pathway and risk of childhood leukemia. Blood. 2010;115(19):3923–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lordelo GS et al. Association between methylenetetrahydrofolate reductase and glutathione S-transferase M1 gene polymorphisms and chronic myeloid leukemia in a Brazilian population. Genet Mol Res. 2012;11(2):1013–26.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng MM et al. Association of single nucleotide polymorphism of methylenetetrahydrofolate reductase gene with susceptibility to acute leukemia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2013;30(4):451–5.

    CAS  PubMed  Google Scholar 

  25. Khorshied MM et al. Methylene tetrahydrofolate reductase (MTHFR) gene polymorphisms in chronic myeloid leukemia: an Egyptian study. Med Oncol. 2014;31(1):794.

    Article  PubMed  Google Scholar 

  26. Zintzaras E, Lau J. Trends in meta-analysis of genetic association studies. J Hum Genet. 2008;53(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  27. Cheson BD. The chronic lymphocytic leukemias. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 2447–65.

    Google Scholar 

  28. Kantarjian HM, Faderl S, Talpaz M. Chronic myelogenous leukemia. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 2433–47.

    Google Scholar 

  29. Weinstein HJ, Tarbell N. Leukemias and lymphomas of childhood. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 2235–56.

    Google Scholar 

  30. van der Put NM et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998;62(5):1044–51.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Wang H et al. Methylenetetrahydrofolate reductase polymorphism C677T is a protective factor for pediatric acute lymphoblastic leukemia in the Chinese population: a meta-analysis. Genet Test Mol Biomark. 2012;16(12):1401–7.

    Article  CAS  Google Scholar 

  32. Yan J et al. A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children. Pediatr Blood Cancer. 2012;58(4):513–8.

    Article  PubMed  Google Scholar 

  33. Cole P, Rodu B. Descriptive epidemiology: cancer statistics. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 228–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieping Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Liu, Y. & Chen, J. MTHFR gene polymorphism and risk of myeloid leukemia: a meta-analysis. Tumor Biol. 35, 8913–8919 (2014). https://doi.org/10.1007/s13277-014-2082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2082-y

Keywords

Navigation