Skip to main content
Log in

Exercise in muscle glycogen storage diseases

  • Glycogenoses
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GSD:

Glycogen storage disease

ATP:

Adenosine triphosphate

RPE:

Rate of perceived exertion

PHK:

Phosphorylase kinase

CK:

Creatine kinase

GDE:

Glycogen debranching enzyme

PGM:

Phosphoglucomutase

CDG:

Congenital disorder of glycosylation

PFK:

Phosphofructokinase

NEFA:

Non esterified fatty acid

PGAM:

Phosphoglycerate mutase

GAA:

α-1,4-glucosidase

VO2peak :

Peak oxygen consumption

MET:

Metabolic equivalents

TCA-cycle:

Tricarboxylic acid cycle

ERT:

Enzyme replacement therapy

References

  • Ainsworth BE, Haskell WL, Herrmann SD et al (2011) 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43:1575–1581

    Article  PubMed  Google Scholar 

  • Andersen ST, Haller RG, Vissing J (2008) Effect of oral sucrose shortly before exercise on work capacity in McArdle disease. Arch Neurol 65:786–789

    PubMed  Google Scholar 

  • Baethmann M, Straub V, & Reuser AJ (2008) Pompe disease, 1st edn., pp 8-104. UNI-MED , Bremen

  • Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32:70–84

    Article  PubMed  Google Scholar 

  • Bembi B, Cerini E, Danesino C et al (2008) Diagnosis of glycogenosis type II. Neurology 71:S4–S11

    Article  CAS  PubMed  Google Scholar 

  • Blair SN, Kohl HW III, Barlow CE, Paffenbarger RS Jr, Gibbons LW, Macera CA (1995) Changes in physical fitness and all-cause mortality. a prospective study of healthy and unhealthy men. JAMA 273:1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Chasiotis D, Sahlin K, Hultman E (1982) Regulation of glycogenolysis in human muscle at rest and during exercise. J Appl Physiol 53:708–715

    Article  CAS  PubMed  Google Scholar 

  • Coleman RA, Stajich JM, Pact VW, Pericak-Vance MA (1986) The ischemic exercise test in normal adults and in patients with weakness and cramps. Muscle Nerve 9:216–221

    Article  CAS  PubMed  Google Scholar 

  • Coleman RA, Winter HS, Wolf B, Gilchrist JM, Chen YT (1992) Glycogen storage disease type III (glycogen debranching enzyme deficiency): correlation of biochemical defects with myopathy and cardiomyopathy. Ann Intern Med 116:896–900

    Article  CAS  PubMed  Google Scholar 

  • Cory JG (2006) Purine and pyrimidine nucleotide metabolism. In: Devlin TM (ed) Textbook of biochemistry: with clinical correlations. Wiley-Liss, Hoboken, pp 789–822

    Google Scholar 

  • DiMauro S, Lamperti C (2001) Muscle glycogenoses. Muscle Nerve 24:984–999

    Article  CAS  PubMed  Google Scholar 

  • DiMauro S, Hartwig GB, Hays A et al (1979) Debrancher deficiency: neuromuscular disorder in 5 adults. Ann Neurol 5:422–436

    Article  CAS  PubMed  Google Scholar 

  • DiMauro S, Miranda AF, Khan S, Gitlin K, Friedman R (1981) Human muscle phosphoglycerate mutase deficiency: newly discovered metabolic myopathy. Science 212:1277–1279

    Article  CAS  PubMed  Google Scholar 

  • DiMauro S, Hays AP, Tsujino S (2004) Metabolic disorders affecting muscle. In: Engel AG, Franzini-Armstrong C (eds) Myology. McGraw-Hill, New York, pp 1535–1558

    Google Scholar 

  • Ding JH, De BT, De BT, Brown BI, Coleman RA, Chen YT (1990) Immunoblot analyses of glycogen debranching enzyme in different subtypes of glycogen storage disease type III. J Pediatr 116:95–100

    Article  CAS  PubMed  Google Scholar 

  • Echaniz-Laguna A, Akman HO, Mohr M et al (2010) Muscle phosphorylase b kinase deficiency revisited. Neuromuscul Disord 20:125–127

    Article  PubMed  Google Scholar 

  • Haller RG, Lewis SF (1991) Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N Engl J Med 324:364–369

    Article  CAS  PubMed  Google Scholar 

  • Haller RG, Vissing J (2002) Spontaneous “second wind” and glucose-induced second “second wind” in McArdle disease: oxidative mechanisms. Arch Neurol 59:1395–1402

    PubMed  Google Scholar 

  • Haller RG, Vissing J (2004a) Functional evaluation of metabolic myopathies. In: Engel AG, Franzini-Armstrong C (eds) Myology. McGraw-Hill, New York, pp 665–679

    Google Scholar 

  • Haller RG, Vissing J (2004b) No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology 62:82–86

    Article  CAS  PubMed  Google Scholar 

  • Haller RG, Lewis SF, Cook JD, Blomqvist CG (1985) Myophosphorylase deficiency impairs muscle oxidative metabolism. Ann Neurol 17:196–199

    Article  CAS  PubMed  Google Scholar 

  • Haller RG, Wyrick P, Taivassalo T, Vissing J (2006) Aerobic conditioning: an effective therapy in McArdle’s disease. Ann Neurol 59:922–928

    Article  PubMed  Google Scholar 

  • Harris RA (2006) Carbohydrate metabolism I: major metabolic pathways and their control. In: Devlin TM (ed) Textbook of biochemistry with clinical correlations. Wiley-Liss, New York, pp 581–635

    Google Scholar 

  • Harris RA, Crabb DW (2006) Metabolic interrelationships. In: Devlin TM (ed) Textbook of biochemistry: with clinical correlations. Wiley-Liss, Hoboken, pp 849–890

    Google Scholar 

  • Hermansen L, Hultman E, Saltin B (1967) Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71:129–139

    Article  CAS  PubMed  Google Scholar 

  • Hers HG (1963) alpha-Glucosidase deficiency in generalized glycogenstorage disease (Pompe’s disease). Biochem J 86:11–16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hogrel JY, Laforet P, Ben YR, Chevrot M, Eymard B, Lombes A (2001) A non-ischemic forearm exercise test for the screening of patients with exercise intolerance. Neurology 56:1733–1738

    Article  CAS  PubMed  Google Scholar 

  • Kazemi-Esfarjani P, Skomorowska E, Jensen TD, Haller RG, Vissing J (2002) A nonischemic forearm exercise test for McArdle disease. Ann Neurol 52:153–159

    Article  PubMed  Google Scholar 

  • Kishnani PS, Austin SL, Arn P et al (2010) Glycogen storage disease type III diagnosis and management guidelines. Genet Med 12:446–463

    Article  CAS  PubMed  Google Scholar 

  • Laforet P, Weinstein DA, Smit PA (2012) The glycogen storage diseases and related disorders. In: Saudubray JM, van den Berghe G, Walter JH (eds) Inborn metabolic diseases. Springer, Berlin Heidelberg, pp 115–139

    Chapter  Google Scholar 

  • Lewis SF, Vora S, Haller RG (1991) Abnormal oxidative metabolism and O2 transport in muscle phosphofructokinase deficiency. J Appl Physiol 70:391–398

    CAS  PubMed  Google Scholar 

  • Lucia A, Nogales-Gadea G, Perez M, Martin MA, Andreu AL, Arenas J (2008) McArdle disease: what do neurologists need to know? Nat Clin Pract Neurol 4:568–577

    Article  PubMed  Google Scholar 

  • Lucia A, Ruiz JR, Santalla A et al (2012) Genotypic and phenotypic features of McArdle disease: insights from the Spanish national registry. J Neurol Neurosurg Psychiatry 83:322–328

    Article  PubMed  Google Scholar 

  • Marzorati M, Porcelli S, Bellistri G, Morandi L, Grassi B (2012) Exercise testing in late-onset glycogen storage disease type II patients undergoing enzyme replacement therapy. Neuromuscul Disord 22(3):S230–S234. doi:10.1016/j.nmd.2012.10.017, S230-S234

    Article  PubMed Central  PubMed  Google Scholar 

  • Mate-Munoz JL, Moran M, Perez M et al (2007) Favorable responses to acute and chronic exercise in McArdle patients. Clin J Sport Med 17:297–303

    Article  PubMed  Google Scholar 

  • McAlpine PJ, Hopkinson DA, Harris H (1970) The relative activities attributable to the three phosphoglucomutase loci (PGM1, PGM2, PGM3) in human tissues. Ann Hum Genet 34:169–175

    Article  CAS  PubMed  Google Scholar 

  • McArdle WD, Katch FI, Katch VL (2007a) Energy transfer in the body. In: McArdle WD, Katch FI, Katch VL (eds) Exercise physiology: energy, nutrition, & human performance. Lippincott Williams & Wilkins, Baltimore, pp 137–163

    Google Scholar 

  • McArdle WD, Katch FI, Katch VL (2007b) Individual differences and measurement of energy capacities. In: McArdle WD, Katch FI, Katch VL (eds) Exercise physiology: energy, nutrition & human performance. Lippincott Williams & Wilkins, Baltimore, pp 229–253

    Google Scholar 

  • Moses SW, Gadoth N, Bashan N, Ben-David E, Slonim A, Wanderman KL (1986) Neuromuscular involvement in glycogen storage disease type III. Acta Paediatr Scand 75:289–296

    Article  CAS  PubMed  Google Scholar 

  • Nadaj-Pakleza AA, Vincitorio CM, Laforet P et al (2009) Permanent muscle weakness in McArdle disease. Muscle Nerve 40:350–357

    Article  PubMed  Google Scholar 

  • Naini A, Toscano A, Musumeci O, Vissing J, Akman HO, DiMauro S (2009) Muscle phosphoglycerate mutase deficiency revisited. Arch Neurol 66:394–398

    PubMed  Google Scholar 

  • Nakajima H, Raben N, Hamaguchi T, Yamasaki T (2002) Phosphofructokinase deficiency; past, present and future. Curr Mol Med 2:197–212

    Article  CAS  PubMed  Google Scholar 

  • Nilsson MI, Samjoo IA, Hettinga BP et al (2012) Aerobic training as an adjunctive therapy to enzyme replacement in Pompe disease. Mol Genet Metab 107:469–479

    Article  CAS  PubMed  Google Scholar 

  • Oh SJ, Park KS, Ryan HF Jr, Danon MJ, Lu J, Naini AB, DiMauro S (2006) Exercise-induced cramp, myoglobinuria, and tubular aggregates in phosphoglycerate mutase deficiency. Muscle Nerve 34:572–576

    Article  CAS  PubMed  Google Scholar 

  • Ollivier K, Hogrel JY, Gomez-Merino D, Berkani M, Eymard B, Portero P (2005a) Effects of an endurance training on patients with McArdle’s disease. Sci Sports 20:21–26

    Article  Google Scholar 

  • Ollivier K, Hogrel JY, Gomez-Merino D et al (2005b) Exercise tolerance and daily life in McArdle’s disease. Muscle Nerve 31:637–641

    Article  PubMed  Google Scholar 

  • Ono A, Kuwajima M, Kono N et al (1995) Glucose infusion paradoxically accelerates degradation of adenine nucleotide in working muscle of patients with glycogen storage disease type VII. Neurology 45:161–164

    Article  CAS  PubMed  Google Scholar 

  • Orngreen MC, Schelhaas HJ, Jeppesen TD et al (2008) Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency? Neurology 70:1876–1882

    Article  CAS  PubMed  Google Scholar 

  • Orngreen MC, Jeppesen TD, Andersen ST et al (2009) Fat metabolism during exercise in patients with McArdle disease. Neurology 72:718–724

    Article  CAS  PubMed  Google Scholar 

  • Pearson CM, Rimer DG, Mommaerts WF (1961) A metabolic myopathy due to absence of muscle phosphorylase. Am J Med 30:502–517

    Article  CAS  PubMed  Google Scholar 

  • Pedersen BK, Saltin B (2006) Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 16(1):3–63

    Article  PubMed  Google Scholar 

  • Perez B, Medrano C, Ecay MJ, Ruiz-Sala P, Martinez-Pardo M, Ugarte M, Perez-Cerda C (2013) A novel congenital disorder of glycosylation type without central nervous system involvement caused by mutations in the phosphoglucomutase 1 gene. J Inherit Metab Dis 36:535–542

    Article  PubMed  Google Scholar 

  • Peronnet F, Massicotte D (1991) Table of nonprotein respiratory quotient: an update. Can J Sport Sci 16:23–29

    CAS  PubMed  Google Scholar 

  • Preisler N, Laforet P, Madsen KL et al (2012a) Fat and carbohydrate metabolism during exercise in late-onset Pompe disease. Mol Genet Metab 107:462–468

    Article  CAS  PubMed  Google Scholar 

  • Preisler N, Orngreen MC, Echaniz-Laguna A et al (2012b) Muscle phosphorylase kinase deficiency: a neutral metabolic variant or a disease? Neurology 78:265–268

    Article  CAS  PubMed  Google Scholar 

  • Preisler N, Laforet P, Echaniz-Laguna A (2013a) Fat and carbohydrate metabolism during exercise in phosphoglucomutase type 1 deficiency. J Clin Endocrinol Metab 98:E1235–E1240

    Article  CAS  PubMed  Google Scholar 

  • Preisler N, Pradel A, Husu E et al (2013b) Exercise intolerance in glycogen storage disease type III: weakness or energy deficiency? Mol Genet Metab 109:14–20

    Article  CAS  PubMed  Google Scholar 

  • Quinlivan R, Vissing J, Hilton-Jones D, & Buckley J (2011) Physical training for McArdle disease. Cochrane Database Syst Rev CD007931

  • Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93:993–1017

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez NR, Di Marco NM, Langley S (2009) American college of sports medicine position stand. nutrition and athletic performance. Med Sci Sports Exerc 41:709–731

    Article  PubMed  Google Scholar 

  • Sacconi S, Wahbi K, Theodore G et al (2014) Atrio-ventricular block requiring pacemaker in patients with late onset Pompe disease. Neuromuscul Disord 24:648–650

    Article  PubMed  Google Scholar 

  • Sakoda S, Shanske S, DiMauro S, Schon EA (1988) Isolation of a cDNA encoding the B isozyme of human phosphoglycerate mutase (PGAM) and characterization of the PGAM gene family. J Biol Chem 263:16899–16905

    CAS  PubMed  Google Scholar 

  • Shanske S, Sakoda S, Hermodson MA, DiMauro S, Schon EA (1987) Isolation of a cDNA encoding the muscle-specific subunit of human phosphoglycerate mutase. J Biol Chem 262:14612–14617

    CAS  PubMed  Google Scholar 

  • Slonim AE, Bulone L, Goldberg T et al (2007) Modification of the natural history of adult-onset acid maltase deficiency by nutrition and exercise therapy. Muscle Nerve 35:70–77

    Article  CAS  PubMed  Google Scholar 

  • Smith TE (2006) Molecular cell biology. In: Devlin TM (ed) Textbook of biochemistry: with clinical correlations. Wiley-Liss, Hoboken, pp 949–1011

    Google Scholar 

  • Stein TP, Wade CE (2005) Metabolic consequences of muscle disuse atrophy. J Nutr 135:1824S–1828S

    CAS  PubMed  Google Scholar 

  • Stojkovic T, Vissing J, Petit F et al (2009) Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med 361:425–427

    Article  CAS  PubMed  Google Scholar 

  • Straub V (2008) Diagnosis. In Pompe Disease pp. 47-58. UNI-MED Verlag AG, D-28323 Bremen

  • Strothotte S, Strigl-Pill N, Grunert B et al (2010) Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2: 12-month results of an observational clinical trial. J Neurol 257:91–97

    Article  CAS  PubMed  Google Scholar 

  • Tegtmeyer LC, Rust S, Van SM (2014) Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med 370:533–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Terzis G, Dimopoulos F, Papadimas GK et al (2011) Effect of aerobic and resistance exercise training on late-onset Pompe disease patients receiving enzyme replacement therapy. Mol Genet Metab 104:279–283

    Article  CAS  PubMed  Google Scholar 

  • Terzis G, Krase A, Papadimas G, Papadopoulos C, Kavouras SA, Manta P (2012) Effects of exercise training during infusion on late-onset Pompe disease patients receiving enzyme replacement therapy. Mol Genet Metab 107:669–673

    Article  CAS  PubMed  Google Scholar 

  • Thompson WR, Gordon NF, Pescatello LS (2010) Pre-exercise evaluations. In: Thompson WR, Gordon NF, Pescatello LS (eds) ACSM’s guidelines for exercise testing and prescription. Kluwer & Lippincott Williams & Wilkins, Baltimore, pp 42–59

    Google Scholar 

  • van den Berg LE (2014). The musculoskeletal system in Pompe disease: pathology, consequences and treatment options. Dissertation, Erasmus Universiteit Rotterdam.

  • van der Ploeg AT, Reuser AJ (2008) Pompe’s disease. Lancet 372:1342–1353

    Article  PubMed  Google Scholar 

  • van der Ploeg AT, Clemens PR, Corzo D et al (2010) A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med 362:1396–1406

    Article  PubMed  Google Scholar 

  • van der Ploeg AT, Barohn R, Carlson L et al (2012) Open-label extension study following the late-onset treatment study (LOTS) of alglucosidase alfa. Mol Genet Metab 107:456–461

    Article  PubMed  Google Scholar 

  • van Hoof F, Hers HG (1967) The subgroups of type 3 glycogenosis. Eur J Biochem 2:265–270

    Article  PubMed  Google Scholar 

  • van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536:295–304

    Article  PubMed Central  PubMed  Google Scholar 

  • Vissing J, Haller RG (2003) The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med 349:2503–2509

    Article  CAS  PubMed  Google Scholar 

  • Vissing J, Orngreen M (2014) Metabolic myopathies. In: Hilton-Jones D, Turner MR (eds) Oxford texbook of neuromuscular disorders. Oxford University Press, Oxford, pp 288–301

    Google Scholar 

  • Vissing J, Galbo H, Haller RG (1996) Paradoxically enhanced glucose production during exercise in humans with blocked glycolysis caused by muscle phosphofructokinase deficiency. Neurology 47:766–771

    Article  CAS  PubMed  Google Scholar 

  • Vissing J, Quistorff B, Haller RG (2005) Effect of fuels on exercise capacity in muscle phosphoglycerate mutase deficiency. Arch Neurol 62:1440–1443

    Article  PubMed  Google Scholar 

  • Voet NB, van der Kooi EL, Riphagen II, Lindeman E, van Engelen BG, Geurts AC (2013) Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 7:CD003907. doi:10.1002/14651858, CD003907.pub4., CD003907

    PubMed  Google Scholar 

  • Wuyts W, Reyniers E, Ceuterick C, Storm K, De BT, Martin JJ (2005) Myopathy and phosphorylase kinase deficiency caused by a mutation in the PHKA1 gene. Am J Med Genet A 133A:82–84

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Dr. Preisler reports having received research support, honoraria, and travel funding from the Genzyme Corporation.

Dr. Haller reports no disclosures.

Dr. Vissing reports having received research support and honoraria from the Genzyme Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai Preisler.

Additional information

Communicated by Georg Hoffmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preisler, N., Haller, R.G. & Vissing, J. Exercise in muscle glycogen storage diseases. J Inherit Metab Dis 38, 551–563 (2015). https://doi.org/10.1007/s10545-014-9771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9771-y

Keywords

Navigation