Skip to main content
Log in

Recent advances in phosphate biosensors

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A number of biosensors have been developed for phosphate analysis particularly, concerning its negative impact within the environmental and biological systems. Enzymatic biosensors comprising either a single or multiple enzymatic system have been extensively used for the direct and indirect analysis of phosphate ions. Furthermore, some non-enzymatic biosensors, such as affinity-based biosensors, provide an alternative analytical approach with a higher selectivity. This article reviews the recent advances in the field of biosensor developed for phosphate estimation in clinical and environmental samples, concerning the techniques involved, and the sensitivity toward phosphate ions. The biosensors have been classified and discussed on the basis of the number of enzymes used to develop the analytical system, and a comparative analysis has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adeloju SB, Lawal AT (2011) Fabrication of a bilayer potentiometric phosphate biosensor by cross-link immobilization with bovine serum albumin and glutaraldehyde. Anal Chim Acta 691:89–94

    Article  CAS  PubMed  Google Scholar 

  • Bansal VK (1990) Serum inorganic phosphorus. Clin Methods Hist Phys Lab, Exam

    Google Scholar 

  • Basheer S, Samyn D, Hedström M et al (2011) A membrane protein based biosensor: use of a phosphate–H + symporter membrane protein (Pho84) in the sensing of phosphate ions. Biosens Bioelectron 27:58–63

    Article  CAS  PubMed  Google Scholar 

  • Berner YN, Shike M (1988) Consequences of phosphate imbalance. Annu Rev Nutr 8:121–148

    Article  CAS  PubMed  Google Scholar 

  • Borgmann S, Schulte A, Neugebauer S, Schuhmann W (2011) Amperometric biosensors. In: Alkire RC, Kolb DM, Lipkowski J (eds) Advances in electrochemical science and engineering. Bioelectrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–83

    Google Scholar 

  • Bugg NC, Jones JA (1998) Hypophosphataemia. Pathophysiology, effects and management on the intensive care unit. Anaesthesia 53:895–902

    Article  CAS  PubMed  Google Scholar 

  • Bunn HF, Seal US, Scott AF (1974) The role of 2,3-diphosphoglycerate in mediating hemoglobin function of mammalian red cells. Ann N Y Acad Sci 241:498–512

    Article  CAS  PubMed  Google Scholar 

  • Conrath N, Gründig B, Hüwel S, Cammann K (1995) A novel enzyme sensor for the determination of inorganic phosphate. Anal Chim Acta 309:47–52

    Article  CAS  Google Scholar 

  • Cosnier S, Gondran C, Watelet J-C et al (1998) A bienzyme electrode (alkaline phosphatase–polyphenol oxidase) for the amperometric determination of phosphate. Anal Chem 70:3952–3956

    Article  CAS  Google Scholar 

  • Fadiran A, Dlamini S, Mavuso A (2008) A comparative study of the phosphate levels in some surface and ground water bodies of Swaziland. Bull Chem Soc Ethiop 22:197–206

    Article  CAS  Google Scholar 

  • Fernández J, López J, Correig X, Katakis I (1998) Reagentless carbon paste phosphate biosensors: preliminary studies. Sens Actuators B Chem 47:13–20

    Article  Google Scholar 

  • Gavalas VG, Chaniotakis NA (2001) Phosphate biosensor based on polyelectrolyte-stabilized pyruvate oxidase. Anal Chim Acta 427:271–277

    Article  CAS  Google Scholar 

  • Gilbert L, Browning S, Jenkins ATA, Hart JP (2010) Studies towards an amperometric phosphate ion biosensor for urine and water analysis. Microchim Acta 170:331–336

    Article  CAS  Google Scholar 

  • Gilbert L, Jenkins ATA, Browning S, Hart JP (2011) Development of an amperometric, screen-printed, single-enzyme phosphate ion biosensor and its application to the analysis of biomedical and environmental samples. Sens Actuator B Chem 160:1322–1327

    Article  CAS  Google Scholar 

  • Gubelit YI, Berezina NA (2010) The causes and consequences of algal blooms: the Cladophora glomerata bloom and the Neva Estuary (eastern Baltic Sea). Mar Pollut Bull 61:183–188

    Article  CAS  PubMed  Google Scholar 

  • Guilbault GG, Nanjo M (1975) A phosphate-selective electrode based on immobilized alkaline phosphatase and glucose oxidase. Anal Chim Acta 78:69–80

    Article  CAS  PubMed  Google Scholar 

  • Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366:560–568

    Article  PubMed  Google Scholar 

  • Haemmerli SD, Suleiman AA, Guilbault GG (1990) Amperometric determination of phosphate by use of a nucleoside phosphorylase-xanthine oxidase enzyme sensor based on a clark-type hydrogen peroxide or oxygen electrode. Anal Biochem 191:106–109

    Article  CAS  PubMed  Google Scholar 

  • Herrou J, Crosson S (2013) myo-inositol and d-ribose ligand discrimination in an ABC periplasmic binding protein. J Bacteriol 195:2379–2388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Honda H, Hosaka N, Akizawa T (2007) Kidney as a regulating organ for calcium and phosphate homeostasis. Clin Calcium 17:654–658

    CAS  PubMed  Google Scholar 

  • Ikebukuro K, Nishida R, Yamamoto H et al (1996a) A novel biosensor system for the determination of phosphate. J Biotechnol 48:67–72

    Article  CAS  Google Scholar 

  • Ikebukuro K, Wakamura H, Karube I et al (1996b) Phosphate sensing system using pyruvate oxidase and chemiluminescence detection. Biosens Bioelectron 11:959–965

    Article  CAS  Google Scholar 

  • Karim MR, Sekine M, Ukita M (2002) Simulation of eutrophication and associated occurrence of hypoxic and anoxic condition in a coastal bay in Japan. Mar Pollut Bull 45:280–285

    Article  CAS  PubMed  Google Scholar 

  • Kubo I, Inagawa M, Sugawara T et al (1991) Phosphate sensor composed from immobilized pyruvate oxidase and an oxygen electrode. Anal Lett 24:1711–1727

    Article  CAS  Google Scholar 

  • Kugimiya A, Takei H (2006) Preparation of molecularly imprinted polymers with thiourea group for phosphate. Anal Chim Acta 564:179–183

    Article  CAS  Google Scholar 

  • Kugimiya A, Takei H (2008) Selective recovery of phosphate from river water using molecularly imprinted polymers. Anal Lett 41:302–311

    Article  CAS  Google Scholar 

  • Kulys J, Higgins IJ, Bannister JV (1992) Amperometric dertermination of phosphate ions by biosensor. Biosens Bioelectron 7:187–191

    Article  CAS  Google Scholar 

  • Kwan RCH, Leung HF, Hon PYT et al (2005) Amperometric biosensor for determining human salivary phosphate. Anal Biochem 343:263–267

    Article  CAS  PubMed  Google Scholar 

  • Lawal AT, Adeloju SB (2010) Polypyrrole-based potentiometric phosphate biosensor. J Mol Catal B Enzym 63:45–49

    Article  CAS  Google Scholar 

  • Lawal AT, Adeloju SB (2013) Polypyrrole based amperometric and potentiometric phosphate biosensors: a comparative study B. Biosens Bioelectron 40:377–384

    Article  CAS  PubMed  Google Scholar 

  • Levi M, Popovtzer M (2001) Disorders of phosphate balance. Atlases diseases of the kidney, 1st ed. pp 7.1–7.14

  • MacDonald R (1977) Red cell 2,3-diphosphoglycerate and oxygen affinity. Anaesthesia 32:544–553

    Article  CAS  PubMed  Google Scholar 

  • Male KB, Luong JHT (1991) An FIA biosensor system for the determination of phosphate. Biosens Bioelectron 6:581–587

    Article  CAS  PubMed  Google Scholar 

  • Moe SM (2006) Disorders of phosphorus homeostasis in chronic kidney disease. In: Hsu C (ed) Calcium phosphate metabolism. Management in chronic renal diseases. Springer, New York, pp 13–28

    Google Scholar 

  • Moe SM (2008) Disorders involving calcium, phosphorus, and magnesium. Prim Care 35:215–237, v–vi

  • Mousty C, Cosnier S, Shan D, Mu S (2001) Trienzymatic biosensor for the determination of inorganic phosphate. Anal Chim Acta 443:1–8

    Article  CAS  Google Scholar 

  • Musso C, Gregori J, Macías-Núñez J (2008) Renal handling of uric acid, magnesium, phosphorus, calcium, and acid base in the elderly. In: MachasNunez J, Cameron JS, Oreopoulos D (eds) The ageing kidney in health and disease. Springer, New York, pp 155–171

    Chapter  Google Scholar 

  • Nakamura H, Ikebukuro K, McNiven S et al (1997) A chemiluminescent FIA biosensor for phosphate ion monitoring using pyruvate oxidase. Biosens Bioelectron 12:959–966

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Hasegawa M, Nomura Y et al (1999a) Development of a highly sensitive chemiluminescence flow-injection analysis sensor for phosphate-ion detection using maltose phosphorylase. J Biotechnol 75:127–133

    Article  CAS  Google Scholar 

  • Nakamura H, Tanaka H, Hasegawa M et al (1999b) An automatic flow-injection analysis system for determining phosphate ion in river water using pyruvate oxidase G (from Aerococcus viridans). Talanta 50:799–807

    Article  CAS  PubMed  Google Scholar 

  • Nollet L, De Gelder L (2013) Handbook of water analysis. CRC Press, Boca Raton

    Google Scholar 

  • Ogabiela E, Adeloju SB (2014) A potentiometric phosphate biosensor based on entrapment of pyruvate oxidase in a polypyrrole film. Anal Method 6:5290–5297

    Article  CAS  Google Scholar 

  • Okoh MP, Hunter JL, Corrie JET, Webb MR (2006) A biosensor for inorganic phosphate using a rhodamine-labeled phosphate binding protein. Biochemistry 45:14764–14771

    Article  CAS  PubMed  Google Scholar 

  • Penido MGMG, Alon US (2012) Phosphate homeostasis and its role in bone health. Pediatr Nephrol 27:2039–2048

    Article  PubMed Central  PubMed  Google Scholar 

  • Rahman MA, Park D-S, Chang S-C et al (2006) The biosensor based on the pyruvate oxidase modified conducting polymer for phosphate ions determinations. Biosens Bioelectron 21:1116–1124

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan S, Sulochana K (2012) Manual of medical laboratory techniques. Jaypee Brothers Medical Publishers Ltd., London 434

    Book  Google Scholar 

  • Ratautaite V, Janssens SD, Haenen K et al (2014) Molecularly imprinted polypyrrole based impedimentric sensor for theophylline determination. Electrochim Acta 130:361–367

    Article  CAS  Google Scholar 

  • Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salins LLE, Deo SK, Daunert S (2004) Phosphate binding protein as the biorecognition element in a biosensor for phosphate. Sens Actuators B Chem 97:81–89

    Article  CAS  PubMed  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196

    Article  CAS  PubMed  Google Scholar 

  • Spellman F (2013) Basic water chemistry. Handbook of water and wastewater treatment plant operations, 3rd edn. CRC Press, Boca Raton, pp 453–470

    Google Scholar 

  • Su Y, Mascini M (1995) AP-GOD biosensor based on a modified poly(phenol) film electrode and its application in the determination of low levels of phosphate. Anal Lett 28:1359–1378

    Article  CAS  Google Scholar 

  • Tafesse F (2014) Detection mechanisms of phosphate sensitive electrodes. Synth React Inorganic, Met Nano-Metal Chem. doi:10.1080/15533174.2013.865229

    Google Scholar 

  • Turner A, Malhotra B (2003) Electrochemical biosensors. Advances in Biosensors: Perspectives in Biosensors, 5th edn. Elsevier Science, Amsterdam, p 196

    Google Scholar 

  • Upadhyay LSB, Verma N (2014) Dual immobilization of biomolecules on the glass surface using cysteine as a bifunctional linker. Proc Biochem 49:1139–1143

    Article  CAS  Google Scholar 

  • Upadhyay LSB, Verma N (2015) Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological Fluids. Biosens Bioelectron 68:611–616

    Article  CAS  PubMed  Google Scholar 

  • Vorum H, Ditzel J (2014) Disturbance of inorganic phosphate metabolism in diabetes mellitus: its relevance to the pathogenesis of diabetic retinopathy. J Ophthalmol 2014:8

    Article  Google Scholar 

  • Walsdorf SNB, Alexandrides G (2005) Therapy for kidney disease; complexing phosphorus with calcium glutarate; prevent forming kidney stones

  • Warwick C, Guerreiro A, Soares A (2013) Sensing and analysis of soluble phosphates in environmental samples: a review. Biosens Bioelectron 41:1–11

    Article  CAS  PubMed  Google Scholar 

  • Werner W (2009) Fertilizers, 6. Environmental aspects. In: Ullmann’s Encycl Ind Chem Vol. 14 New York: John Wiley & Sons, pp 295–312

  • Willsky GR, Malamy MH (1980) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144:356–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wollenberger U, Schubert F, Scheller FW (1992) Biosensor for sensitive phosphate detection. Sens Actuators B Chem 7:412–415

    Article  CAS  Google Scholar 

  • Wollenberger U, Schubert F, Pfeiffer D, Scheller FW (1993) Enhancing biosensor performance using multienzyme systems. Trend Biotechnol 11:255–262

    Article  CAS  Google Scholar 

  • Zhang Z, Jaffrezic-Renault N, Bessueille F et al (2008) Development of a conductometric phosphate biosensor based on tri-layer maltose phosphorylase composite films. Anal Chim Acta 615:73–79

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata Sheo Bachan Upadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, L.S.B., Verma, N. Recent advances in phosphate biosensors. Biotechnol Lett 37, 1335–1345 (2015). https://doi.org/10.1007/s10529-015-1823-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1823-3

Keywords

Navigation