Skip to main content

Advertisement

Log in

Notch signaling regulates tumor-induced angiogenesis in SPARC-overexpressed neuroblastoma

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Despite existing aggressive treatment modalities, the prognosis for advanced stage neuroblastoma remains poor with significant long-term illness in disease survivors. Advance stage disease features are associated with tumor vascularity, and as such, angiogenesis inhibitors may prove useful along with current therapies. The matricellular protein, secreted protein acidic and rich in cysteine (SPARC), is known to inhibit proliferation and migration of endothelial cells stimulated by growth factors. Here, we sought to determine the effect of SPARC on neuroblastoma tumor cell-induced angiogenesis and to decipher the molecular mechanisms involved in angiogenesis inhibition. Conditioned medium from SPARC-overexpressed neuroblastoma cells (pSPARC-CM) inhibited endothelial tube formation, cell proliferation, induced programmed cell death and suppressed expression of pro-angiogenic molecules such as VEGF, FGF, PDGF, and MMP-9 in endothelial cells. Further analyses revealed that pSPARC-CM-suppressed expression of growth factors was mediated by inhibition of the Notch signaling pathway, and cells cultured on conditioned medium from tumor cells that overexpress both Notch intracellular domain (NICD-CM) and SPARC resumed the pSPARC-CM-suppressed capillary tube formation and growth factor expression in vitro. Further, SPARC overexpression in neuroblastoma cells inhibited neo-vascularization in vivo in a mouse dorsal air sac model. Furthermore, SPARC overexpression-induced endothelial cell death was observed by co-localization studies with TUNEL assay and an endothelial marker, CD31, in xenograft tumor sections from SPARC-overexpressed mice. Our data collectively suggest that SPARC overexpression induces endothelial cell apoptosis and inhibits angiogenesis both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morowitz MJ, Barr R, Wang Q, King R, Rhodin N, Pawel B et al (2005) Methionine aminopeptidase 2 inhibition is an effective treatment strategy for neuroblastoma in preclinical models. Clin Cancer Res 11(7):2680–2685

    Article  PubMed  CAS  Google Scholar 

  2. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Children’s Cancer Group et al (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. N Engl J Med 341(16):1165–1173

    Article  PubMed  CAS  Google Scholar 

  3. Meadows AT, Tsunematsu Y (2000) Late effects of treatment for neuroblastoma. In: Brodeur GM, Sawada T, Tsuchida Y, Voute PA (eds) Neuroblastoma. Elsevier, Amsterdam, pp 561–570

    Google Scholar 

  4. Meitar D, Crawford SE, Rademaker AW, Cohn SL (1996) Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J Clin Oncol 14(2):405–414

    PubMed  CAS  Google Scholar 

  5. Brekken RA, Sage EH (2000) SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol 19(7):569–580

    Article  PubMed  CAS  Google Scholar 

  6. Martinek N, Shahab J, Sodek J, Ringuette M (2007) Is SPARC an evolutionarily conserved collagen chaperone? J Dent Res 86(4):296–305

    Article  PubMed  CAS  Google Scholar 

  7. Framson PE, Sage EH (2004) SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 92(4):679–690

    Article  PubMed  CAS  Google Scholar 

  8. Bradshaw AD, Sage EH (2001) SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 107(9):1049–1054

    Article  PubMed  CAS  Google Scholar 

  9. Sage H, Johnson C, Bornstein P (1984) Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J Biol Chem 259(6):3993–4007

    PubMed  CAS  Google Scholar 

  10. Chlenski A, Guerrero LJ, Peddinti R, Spitz JA, Leonhardt PT, Yang Q et al (2010) Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors. Mol Cancer 9:138

    Article  PubMed  Google Scholar 

  11. Yunker CK, Golembieski W, Lemke N, Schultz CR, Cazacu S, Brodie C et al (2008) SPARC-induced increase in glioma matrix and decrease in vascularity are associated with reduced VEGF expression and secretion. Int J Cancer 122(12):2735–2743

    Article  PubMed  CAS  Google Scholar 

  12. Rossler J, Taylor M, Geoerger B, Farace F, Lagodny J, Peschka-Suss R et al (2008) Angiogenesis as a target in neuroblastoma. Eur J Cancer 44(12):1645–1656

    Article  PubMed  Google Scholar 

  13. Eggert A, Ikegaki N, Kwiatkowski J, Zhao H, Brodeur GM, Himelstein BP (2000) High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin Cancer Res 6(5):1900–1908

    PubMed  CAS  Google Scholar 

  14. Engebraaten O, Schwachenwald R, Valen H, Bjerkvig R, Laerum OD, Backlund EO (1992) Effects of high and low single dose irradiation on glioma spheroid invasion into normal rat brain tissue in vitro. Anticancer Res 12(5):1501–1506

    PubMed  CAS  Google Scholar 

  15. Li T, Zeng ZC, Wang L, Qiu SJ, Zhou JW, Zhi XT et al (2011) Radiation enhances long-term metastasis potential of residual hepatocellular carcinoma in nude mice through TMPRSS4-induced epithelial-mesenchymal transition. Cancer Gene Ther 18:617–626

    Article  PubMed  CAS  Google Scholar 

  16. Karar J, Maity A (2009) Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther 8(21):1994–2001

    Article  PubMed  CAS  Google Scholar 

  17. Lorusso G, Ruegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130(6):1091–1103

    Article  PubMed  CAS  Google Scholar 

  18. Adair JC, Baldwin N, Kornfeld M, Rosenberg GA (1999) Radiation-induced blood-brain barrier damage in astrocytoma: relation to elevated gelatinase B and urokinase. J Neurooncol 44(3):283–289

    Article  PubMed  CAS  Google Scholar 

  19. Bivik CA, Larsson PK, Kagedal KM, Rosdahl IK, Ollinger KM (2006) UVA/B-induced apoptosis in human melanocytes involves translocation of cathepsins and Bcl-2 family members. J Invest Dermatol 126(5):1119–1127

    Article  PubMed  CAS  Google Scholar 

  20. Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, Rafael T et al (2005) Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med 202(6):739–750

    Article  PubMed  CAS  Google Scholar 

  21. Hovdenak N, Karlsdottir A, Sorbye H, Dahl O (2003) Profiles and time course of acute radiation toxicity symptoms during conformal radiotherapy for cancer of the prostate. Acta Oncol 42(7):741–748

    Article  PubMed  Google Scholar 

  22. Trog D, Yeghiazaryan K, Fountoulakis M, Friedlein A, Moenkemann H, Haertel N et al (2006) Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. Eur J Pharmacol 542(1–3):8–15

    Article  PubMed  CAS  Google Scholar 

  23. Zhai GG, Malhotra R, Delaney M, Latham D, Nestler U, Zhang M et al (2006) Radiation enhances the invasive potential of primary glioblastoma cells via activation of the Rho signaling pathway. J Neurooncol 76(3):227–237

    Article  PubMed  CAS  Google Scholar 

  24. Knizetova P, Ehrmann J, Hlobilkova A, Vancova I, Kalita O, Kolar Z et al (2008) Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle 7(16):2553–2561

    Article  PubMed  CAS  Google Scholar 

  25. Zheng M, Morgan-Lappe SE, Yang J, Bockbrader KM, Pamarthy D, Thomas D et al (2008) Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by small interfering RNA silencing of tumor necrosis factor receptor-associated factor 2. Cancer Res 68(18):7570–7578

    Article  PubMed  CAS  Google Scholar 

  26. Vicini FA, Kestin L, Huang R, Martinez A (2003) Does local recurrence affect the rate of distant metastases and survival in patients with early-stage breast carcinoma treated with breast-conserving therapy? Cancer 97(4):910–919

    Article  PubMed  Google Scholar 

  27. Lee CG, Heijn M, di Tomaso E, Griffon-Etienne M, Ancukiewicz M, Koike C et al (2000) Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60(19):5565–5570

    PubMed  CAS  Google Scholar 

  28. Sofia VI, Martins LR, Imaizumi N, Nunes RJ, Rino J, Kuonen F et al (2010) Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS ONE 5(6):e11222

    Article  Google Scholar 

  29. Bhoopathi P, Chetty C, Gujrati M, Dinh DH, Rao JS, Lakka SS (2010) The role of MMP-9 in the anti-angiogenic effect of secreted protein acidic and rich in cysteine. Br J Cancer 102(3):530–540

    Article  PubMed  CAS  Google Scholar 

  30. Chetty C, Lakka SS, Bhoopathi P, Kunigal S, Geiss R, Rao JS (2008) Tissue inhibitor of metalloproteinase 3 suppresses tumor angiogenesis in matrix metalloproteinase 2-down-regulated lung cancer. Cancer Res 68(12):4736–4745

    Article  PubMed  CAS  Google Scholar 

  31. Bhoopathi P, Chetty C, Kunigal S, Vanamala SK, Rao JS, Lakka SS (2008) Blockade of tumor growth due to matrix metalloproteinase-9 inhibition is mediated by sequential activation of beta1-integrin, ERK, and NF-kappaB. J Biol Chem 283(3):1545–1552

    Article  PubMed  CAS  Google Scholar 

  32. Chetty C, Bhoopathi P, Rao JS, Lakka SS (2009) Inhibition of matrix metalloproteinase-2 enhances radiosensitivity by abrogating radiation-induced FoxM1-mediated G2/M arrest in A549 lung cancer cells. Int J Cancer 124:2468–2477

    Article  PubMed  CAS  Google Scholar 

  33. Tivnan A, Tracey L, Buckley PG, Alcock LC, Davidoff AM, Stallings RL (2011) MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 11:33

    Article  PubMed  CAS  Google Scholar 

  34. Xue Y, Cao R, Nilsson D, Chen S, Westergren R, Hedlund EM et al (2008) FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci USA 105(29):10167–10172

    Article  PubMed  CAS  Google Scholar 

  35. Bhoopathi P, Gorantla B, Sailaja GS, Gondi CS, Gujrati M, Klopfenstein JD et al (2012) SPARC overexpression inhibits cell proliferation in neuroblastoma and is partly mediated by tumor suppressor protein PTEN and AKT. PLoS ONE 7(5):e36093

    Article  PubMed  CAS  Google Scholar 

  36. Xue Y, Chen F, Zhang D, Lim S, Cao Y (2009) Tumor-derived VEGF modulates hematopoiesis. J Angiogenes Res 1:9

    Article  PubMed  Google Scholar 

  37. Hu XB, Feng F, Wang YC, Wang L, He F, Dou GR et al (2009) Blockade of Notch signaling in tumor-bearing mice may lead to tumor regression, progression, or metastasis, depending on tumor cell types. Neoplasia 11(1):32–38

    PubMed  CAS  Google Scholar 

  38. Bhoopathi P, Chetty C, Dontula R, Gujrati M, Dinh DH, Rao JS et al (2011) SPARC stimulates neuronal differentiation of medulloblastoma cells via the Notch1/STAT3 pathway. Cancer Res 71(14):4908–4919

    Article  PubMed  CAS  Google Scholar 

  39. Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y (2004) Hes binding to STAT3 mediates crosstalk between Notch and JAK–STAT signalling. Nat Cell Biol 6(6):547–554

    Article  PubMed  CAS  Google Scholar 

  40. Kluppel M, Wrana JL (2005) Turning it up a Notch: cross-talk between TGF beta and Notch signaling. BioEssays 27(2):115–118

    Article  PubMed  Google Scholar 

  41. Sakurai T, Kudo M (2011) Signaling pathways governing tumor angiogenesis. Oncology 81(Suppl 1):24–29

    Article  PubMed  CAS  Google Scholar 

  42. Shi W, Harris AL (2006) Notch signaling in breast cancer and tumor angiogenesis: cross-talk and therapeutic potentials. J Mammary Gland Biol Neoplasia 11(1):41–52

    Article  PubMed  CAS  Google Scholar 

  43. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J et al (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21(13):2000–2008

    Article  PubMed  CAS  Google Scholar 

  44. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC et al (2003) Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 22(3):319–329

    Article  PubMed  CAS  Google Scholar 

  45. Schust J, Sperl B, Hollis A, Mayer TU, Berg T (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13(11):1235–1242

    Article  PubMed  CAS  Google Scholar 

  46. Assifi MM, Hines OJ (2011) Anti-angiogenic agents in pancreatic cancer: a review. Anticancer Agents Med Chem 11(5):464–469

    Article  PubMed  CAS  Google Scholar 

  47. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622

    Article  PubMed  CAS  Google Scholar 

  48. Sharma PS, Sharma R, Tyagi T (2011) VEGF/VEGFR pathway inhibitors as anti-angiogenic agents: present and future. Curr Cancer Drug Targets 11(5):624–653

    Article  PubMed  CAS  Google Scholar 

  49. Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L (2011) Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med 32(2):88–111

    Article  PubMed  CAS  Google Scholar 

  50. Roy CS, Karmakar S, Banik NL, Ray SK (2012) Targeting angiogenesis for controlling neuroblastoma. J Oncol 2012:782020 (Epub: %2011 Aug 25:782020)

    Google Scholar 

  51. Talapatra S, Thompson CB (2001) Growth factor signaling in cell survival: implications for cancer treatment. J Pharmacol Exp Ther 298(3):873–878

    PubMed  CAS  Google Scholar 

  52. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V et al (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/AKT signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273(46):30336–30343

    Article  PubMed  CAS  Google Scholar 

  53. Wu W, Lee WL, Wu YY, Chen D, Liu TJ, Jang A et al (2000) Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J Biol Chem 275(51):40113–40119

    Article  PubMed  CAS  Google Scholar 

  54. Bhatt AP, Bhende PM, Sin SH, Roy D, Dittmer DP, Damania B (2010) Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/AKT/mTOR-addicted lymphomas. Blood 115(22):4455–4463

    Article  PubMed  CAS  Google Scholar 

  55. Zhang B, Cao H, Rao GN (2005) 15(S)-hydroxyeicosatetraenoic acid induces angiogenesis via activation of PI3K-AKT-mTOR-S6K1 signaling. Cancer Res 65(16):7283–7291

    Article  PubMed  CAS  Google Scholar 

  56. Li JL, Harris AL (2005) Notch signaling from tumor cells: a new mechanism of angiogenesis. Cancer Cell 8(1):1–3

    Article  PubMed  CAS  Google Scholar 

  57. Lynn KD, Udugamasooriya DG, Roland CL, Castrillon DH, Kodadek TJ, Brekken RA (2010) GU81, a VEGFR2 antagonist peptoid, enhances the anti-tumor activity of doxorubicin in the murine MMTV-PyMT transgenic model of breast cancer. BMC Cancer 10:397

    Article  PubMed  CAS  Google Scholar 

  58. Jendraschak E, Sage EH (1996) Regulation of angiogenesis by SPARC and angiostatin: implications for tumor cell biology. Semin Cancer Biol 7(3):139–146

    Article  PubMed  CAS  Google Scholar 

  59. Hasselaar P, Sage EH (1992) SPARC antagonizes the effect of basic fibroblast growth factor on the migration of bovine aortic endothelial cells. J Cell Biochem 49(3):272–283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Alicia Woodworth for technical assistance and Diana Meister and Sushma Jasti for manuscript review. We also thank Dr. P. Houghton (St. Jude Children’s Research Hospital, Memphis, TN) for providing NB-1691 neuroblastoma cell line and Dr. Francisco J Candal (Centers for Disease Control and Prevention, Atlanta, GA, USA) for providing HMEC cells. This project was supported by award number CA147792 (to J.S.R.) from the National Institutes of Health (NIH). Contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH. The funding agency had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors disclose no conflict of interest.

Ethical standards

The experiments comply with the current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasti S. Rao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 15080 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorantla, B., Bhoopathi, P., Chetty, C. et al. Notch signaling regulates tumor-induced angiogenesis in SPARC-overexpressed neuroblastoma. Angiogenesis 16, 85–100 (2013). https://doi.org/10.1007/s10456-012-9301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9301-1

Keywords

Navigation