Skip to main content

Advertisement

Log in

Radiation Enhances the Invasive Potential of Primary Glioblastoma Cells via Activation of the Rho Signaling Pathway

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Summary

Glioblastoma multiforme (GBM) is among the most treatment-refractory of all human tumors. Radiation is effective at prolonging survival of GBM patients; however, the vast majority of GBM patients demonstrate progression at or near the site of original treatment. We have identified primary GBM cell lines that demonstrate increased invasive potential upon radiation exposure. As this represents a novel mechanism by which radiation-treated GBMs can fail therapy, we further investigated the identity of downstream signaling molecules that enhance the invasive phenotype of irradiated GBMs. Matrigel matrices were used to compare the extent of invasion of irradiated vs. non-irradiated GBM cell lines UN3 and GM2. The in vitro invasive potential of these irradiated cells were characterized in the presence of both pharmacologic and dominant negative inhibitors of extracellular matrix and cell signaling molecules including MMP, uPA, IGFR, EGFR, PI-3K, AKT, and Rho kinase. The effect of radiation on the expression of these signaling molecules was determined with Western blot assays. Ultimately, the in vitro tumor invasion results were confirmed using an in vivo 9L GBM model in rats. Using the primary GBM cell lines UN3 and GM2, we found that radiation enhances the invasive potential of these cells via activation of EGFR and IGFR1. Our findings suggest that activation of Rho signaling via PI-3K is required for radiation-induced invasion, although not required for invasion under physiologic conditions. This report clearly demonstrates that radiation-mediated invasion is fundamentally distinct from invasion under normal cellular physiology and identifies potential therapeutic targets to overcome this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MD Walker E Alexander WE Hunt (1978) ArticleTitleEvaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas J Neurosurg 49 333–343 Occurrence Handle1:STN:280:CSeB2cvhvVw%3D Occurrence Handle355604

    CAS  PubMed  Google Scholar 

  2. MD Walker SB Green DP Byar (1980) ArticleTitleRandomized comparisons of radiotherapy and nitrosureas for the treatment of malignant gliomas after surgery N Engl J Med 303 1323–1329 Occurrence Handle1:STN:280:Bi6D2M3htF0%3D Occurrence Handle7001230

    CAS  PubMed  Google Scholar 

  3. EA Maher FB Furnari RM Bachoo DH Rowitch DN Louis WK Cavenee RA DePinho (2001) ArticleTitleMalignant glioma: genetics and biology of a grave matter Genes Dev 15 1311–1333 Occurrence Handle10.1101/gad.891601 Occurrence Handle1:CAS:528:DC%2BD3MXktlSntbw%3D Occurrence Handle11390353

    Article  CAS  PubMed  Google Scholar 

  4. LJ McCawley LM Matrisian (2001) ArticleTitleMatrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13 534–540 Occurrence Handle10.1016/S0955-0674(00)00248-9 Occurrence Handle1:CAS:528:DC%2BD3MXmsFersLw%3D Occurrence Handle11544020

    Article  CAS  PubMed  Google Scholar 

  5. JS Rao PA Steck S Mohanam WG Stetler-Stevenson LA Liotta R Sawaya (1993) ArticleTitleElevated levels of M(r) 92,000 type IV collagenase in human brain tumors Cancer Res 53 2208–2211 Occurrence Handle1:STN:280:ByyB2M7ktlw%3D Occurrence Handle8485704

    CAS  PubMed  Google Scholar 

  6. PA Forsyth H Wong TD Laing NB Rewcastle DG Morris H Muzik KJ Leco RN Johnston PM Brasher G Sutherland DR Edwards (1999) ArticleTitleGelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas Br J Cancer 79 1828–1835 Occurrence Handle10.1038/sj.bjc.6690291 Occurrence Handle1:STN:280:DyaK1M3itFWnsw%3D%3D Occurrence Handle10206300

    Article  CAS  PubMed  Google Scholar 

  7. K Kunishio M Okada Y Matsumoto S Nagao (2003) ArticleTitleMatrix metalloproteinase-2 and -9 expression in astrocytic tumors Brain Tumor Pathol 20 39–45 Occurrence Handle14756439

    PubMed  Google Scholar 

  8. M Nakada Y Okada J Yamashita (2003) ArticleTitleThe role of matrix metalloproteinases in glioma invasion Front Biosci 8 e261–e269 Occurrence Handle1:CAS:528:DC%2BD3sXitFygtbY%3D Occurrence Handle12456313

    CAS  PubMed  Google Scholar 

  9. C Wild-Bode M Weller A Rimner J Dichgans W Wick (2001) ArticleTitleSublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma Cancer Res 61 2744–2750 Occurrence Handle1:CAS:528:DC%2BD3MXisVSksbs%3D Occurrence Handle11289157

    CAS  PubMed  Google Scholar 

  10. LW Qian K Mizumoto T Urashima E Nagai N Maehara N Sato M Nakajima M Tanaka (2002) ArticleTitleRadiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023 Clin Cancer Res 8 1223–1227 Occurrence Handle1:CAS:528:DC%2BD38XjsF2ltLw%3D Occurrence Handle11948136

    CAS  PubMed  Google Scholar 

  11. K Ohuchida K Mizumoto M Murakami LW Qian N Sato E Nagai K Matsumoto T Nakamura M Tanaka (2004) ArticleTitleRadiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions Cancer Res 64 3215–3222 Occurrence Handle10.1158/0008-5472.CAN-03-2464 Occurrence Handle1:CAS:528:DC%2BD2cXjs1ehtL4%3D Occurrence Handle15126362

    Article  CAS  PubMed  Google Scholar 

  12. M Westphal M Hansel H Nausch E Rohde HD Hermann (1990) Culture of human brain tumors on an extracellular matrix derived from bovine corneal endothelial cells and cultured human glioma cells JW Polard JM Walker (Eds) Animal Cell Culture Humana Press Clifton, New Jersey 113–131

    Google Scholar 

  13. A Chakravarti A Chakladar MA Delaney DE Latham JS Loeffler (2002) ArticleTitleThe epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a ras-dependent manner Cancer Res 62 4307–4315 Occurrence Handle1:CAS:528:DC%2BD38XlvFeltbY%3D Occurrence Handle12154034

    CAS  PubMed  Google Scholar 

  14. DA Leonard R Lin RA Cerione D Manor (1998) ArticleTitleBiochemical studies of the mechanism of action of the Cdc42-GTPase-activating protein J Biol Chem 273 16210–16215 Occurrence Handle1:CAS:528:DyaK1cXkt1Gisr4%3D Occurrence Handle9632678

    CAS  PubMed  Google Scholar 

  15. JS Loeffler E Alexander Suffix3rd FH Hochberg PY Wen JH Morris WC Schoene RL Siddon RH Morse PM Black (1990) ArticleTitleClinical patterns of failure following stereotactic interstitial irradiation for malignant gliomas Int J Radiat Oncol Biol Phys 19 1455–1462 Occurrence Handle1:STN:280:By6D1cnhsFw%3D Occurrence Handle2262370

    CAS  PubMed  Google Scholar 

  16. LJ McCawley P O’Brien LG Hudson (1997) ArticleTitleOverexpression of the epidermal growth factor receptor contributes to enhanced ligand-mediated motility in keratinocyte cell lines Endocrinol 138 121–127 Occurrence Handle10.1210/en.138.1.121 Occurrence Handle1:CAS:528:DyaK2sXis1Wr

    Article  CAS  Google Scholar 

  17. S Mohanam SK Chintala PM Mohan R Sawaya GK Lagos ZL Gokaslan GP Kouraklis JS Rao (1998) ArticleTitleIncreased invasion of neuroglioma cells transfected with urokinase plasminogen activator receptor cDNA Int J Oncol 13 1285–1290 Occurrence Handle1:CAS:528:DyaK1cXotVajtrg%3D Occurrence Handle9824646

    CAS  PubMed  Google Scholar 

  18. M Yamamoto R Sawaya S Mohanam AK Bindal JM Bruner K Oka VH Rao M Tomonaga GL Nicolson JS Rao (1994) ArticleTitleExpression and localization of urokinase-type plasminogen activator in human astrocytomas in vivo Cancer Res 54 3656–3661 Occurrence Handle1:CAS:528:DyaK2cXltVGmtrw%3D Occurrence Handle8033079

    CAS  PubMed  Google Scholar 

  19. CL Gladson V Pijuan-Thompson MA Olman GY Gillespie IZ Yacoub (1995) ArticleTitleUp-regulation of urokinase and urokinase receptor genes in malignant astrocytoma Am J Pathol 146 1150–1160 Occurrence Handle1:STN:280:ByqB28nmsF0%3D Occurrence Handle7747809

    CAS  PubMed  Google Scholar 

  20. SS Lakka A Bhattacharya S Mohanam D Boyd JS Rao (2001) ArticleTitleRegulation of the uPA gene in various grades of human glioma cells Int J Oncol 18 71–79 Occurrence Handle1:CAS:528:DC%2BD3MXhtlGjsw%3D%3D Occurrence Handle11115541

    CAS  PubMed  Google Scholar 

  21. A Chakravarti JS Loeffler NJ Dyson (2002) ArticleTitleInsulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through the continued activation of phosphoinositide 3-kinase signaling Cancer Res 62 200–207 Occurrence Handle1:CAS:528:DC%2BD38XntV2hsA%3D%3D Occurrence Handle11782378

    CAS  PubMed  Google Scholar 

  22. N Nusser E Gosmanova Y Zheng G Tigyi (2002) ArticleTitleNerve growth factor signals through TrkA, phosphatidylinositol 3-kinase, and Rac1 to inactivate RhoA during the initiation of neuronal differentiation of PC12 cells J Biol Chem 277 35840–35846 Occurrence Handle10.1074/jbc.M203617200 Occurrence Handle1:CAS:528:DC%2BD38XnsVequ70%3D Occurrence Handle12133829

    Article  CAS  PubMed  Google Scholar 

  23. C Shelly R Herrera (2002) ArticleTitleActivation of SGK1 by HGF, Rac1 and integrin-mediated cell adhesion in MDCK cells: PI-3K-dependent and -independent pathways J Cell Sci 115 1985–1993 Occurrence Handle1:CAS:528:DC%2BD38XktFymt74%3D Occurrence Handle11956329

    CAS  PubMed  Google Scholar 

  24. C Murga M Zohar H Teramoto JS Gutkind (2002) ArticleTitleRac1 and RhoG promote cell survival by the activation of PI3K and Akt, independently of their ability to stimulate JNK and NF-kappaB Oncogene 21 207–216 Occurrence Handle10.1038/sj.onc.1205036 Occurrence Handle1:CAS:528:DC%2BD38XhtVejtrc%3D Occurrence Handle11803464

    Article  CAS  PubMed  Google Scholar 

  25. A Wicki V Niggli (2001) ArticleTitleThe Rho/Rho-kinase and the phosphatidylinositol 3-kinase pathways are essential for spontaneous locomotion of Walker 256 carcinosarcoma cells Int J Cancer 91 763–771 Occurrence Handle10.1002/1097-0215(200102)9999:9999<::AID-IJC1128>3.0.CO;2-B Occurrence Handle1:CAS:528:DC%2BD3MXhsFGjsbk%3D Occurrence Handle11275977

    Article  CAS  PubMed  Google Scholar 

  26. PJ Keely JK Westwick IP Whitehead CJ Der LV Parise (1997) ArticleTitleCdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K Nature 390 632–636 Occurrence Handle10.1038/37656 Occurrence Handle1:CAS:528:DyaK1cXotVOktA%3D%3D Occurrence Handle9403696

    Article  CAS  PubMed  Google Scholar 

  27. CL Carpenter KF Tolias AC Couvillon JH Hartwig (1997) ArticleTitleSignal transduction pathways involving the small G proteins rac and Cdc42 and phosphoinositide kinases Adv Enzyme Regul 37 377–390 Occurrence Handle1:STN:280:DyaK1c%2FitV2msA%3D%3D Occurrence Handle9381982

    CAS  PubMed  Google Scholar 

  28. EE Sander JP Klooster S Delft Particlevan RA Kammen Particlevan der JG Collard (1999) ArticleTitleRac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior J Cell Biol 147 1009–1022 Occurrence Handle10.1083/jcb.147.5.1009 Occurrence Handle1:CAS:528:DyaK1MXnslOjsLY%3D Occurrence Handle10579721

    Article  CAS  PubMed  Google Scholar 

  29. M Raftopoulou A Hall (2004) ArticleTitleCell migration: Rho GTPases lead the way Dev Biol 265 23–32 Occurrence Handle10.1016/j.ydbio.2003.06.003 Occurrence Handle1:CAS:528:DC%2BD3sXhtVShsr%2FJ Occurrence Handle14697350

    Article  CAS  PubMed  Google Scholar 

  30. D Toksoz KD Merdek (2002) ArticleTitleThe Rho small GTPase: functions in health and disease Histol Histopathol 17 915–927 Occurrence Handle1:CAS:528:DC%2BD38XntVGqtrw%3D Occurrence Handle12168803

    CAS  PubMed  Google Scholar 

  31. T Wittmann CM Waterman-Storer (2001) ArticleTitleCell motility: can Rho GTPases and microtubules point the way? J Cell Sci 114 3795–3803 Occurrence Handle1:CAS:528:DC%2BD3MXosl2rtb0%3D Occurrence Handle11719546

    CAS  PubMed  Google Scholar 

  32. B Wojciak-Stothard S Potempa T Eichholtz AJ Ridley (2001) ArticleTitleRho and Rac but not Cdc42 regulate endothelial cell permeability J Cell Sci 114 1343–1355 Occurrence Handle1:CAS:528:DC%2BD3MXjt1OmtLs%3D Occurrence Handle11257000

    CAS  PubMed  Google Scholar 

  33. AJ Ridley (2001) ArticleTitleRho proteins, PI 3-kinases, and monocyte/macrophage motility FEBS Lett 498 168–171 Occurrence Handle10.1016/S0014-5793(01)02481-4 Occurrence Handle1:CAS:528:DC%2BD3MXksVGlu7w%3D Occurrence Handle11412850

    Article  CAS  PubMed  Google Scholar 

  34. YW Qiang Y Endo JS Rubin S Rudikoff (2003) ArticleTitleWnt signaling in B-cell neoplasia Oncogene 22 1536–1545 Occurrence Handle10.1038/sj.onc.1206239 Occurrence Handle1:CAS:528:DC%2BD3sXhvFShtbc%3D Occurrence Handle12629517

    Article  CAS  PubMed  Google Scholar 

  35. M Amano K Chihara K Kimura Y Fukata N Nakamura Y Matsuura K Kaibuchi (1997) ArticleTitleFormation of actin stress fibers and focal adhesions enhanced by Rho-kinase Science 275 1308–1311 Occurrence Handle10.1126/science.275.5304.1308 Occurrence Handle1:CAS:528:DyaK2sXhs1GrtL8%3D Occurrence Handle9036856

    Article  CAS  PubMed  Google Scholar 

  36. K Kaibuchi S Kuroda M Amano (1999) ArticleTitleRegulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells Annu Rev Biochem 68 459–486 Occurrence Handle10.1146/annurev.biochem.68.1.459 Occurrence Handle1:CAS:528:DyaK1MXlvFajsbg%3D Occurrence Handle10872457

    Article  CAS  PubMed  Google Scholar 

  37. RD Rao JH Uhm S Krishnan CD James (2003) ArticleTitleGenetic and signaling pathway alterations in glioblastoma: relevance to novel targeted therapies Front Biosci 8 E270–E280 Occurrence Handle1:CAS:528:DC%2BD3sXjvVajt74%3D Occurrence Handle12700121

    CAS  PubMed  Google Scholar 

  38. S Mohanam SL Jasti SR Kondraganti N Chandrasekar Y Kin GN Fuller SS Lakka AP Kyritsis DH Dinh WC Olivero M Gujrati WK Yung JS Rao (2001) ArticleTitleStable transfection of urokinase-type plasminogen activator antisense construct modulates invasion of human glioblastoma cells Clin Cancer Res 7 2519–2526 Occurrence Handle1:CAS:528:DC%2BD3MXmsVOmtbk%3D Occurrence Handle11489835

    CAS  PubMed  Google Scholar 

  39. S Etienne-Manneville A Hall (2001) ArticleTitleIntegrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta Cell 106 489–498 Occurrence Handle1:CAS:528:DC%2BD3MXmsFOitbc%3D Occurrence Handle11525734

    CAS  PubMed  Google Scholar 

  40. E Sahai CJ Marshall (2002) ArticleTitleRHO-GTPases and cancer Nat Rev Cancer 2 133–142 Occurrence Handle10.1038/nrc725 Occurrence Handle12635176

    Article  PubMed  Google Scholar 

  41. AJ Ridley WE Allen M Peppelenbosch GE Jones (1999) ArticleTitleRho family proteins and cell migration Biochem Soc Symp 65 111–123 Occurrence Handle1:CAS:528:DyaK1MXitlCit7c%3D Occurrence Handle10320936

    CAS  PubMed  Google Scholar 

  42. A Ridley ( 2000) ArticleTitleMolecular switches in metastasis Nature 406 466–467 Occurrence Handle10.1038/35020170 Occurrence Handle10952292

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Chakravarti.

Additional information

Gary G. Zhai, Rajeev Malhotra: These two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, G.G., Malhotra, R., Delaney, M. et al. Radiation Enhances the Invasive Potential of Primary Glioblastoma Cells via Activation of the Rho Signaling Pathway. J Neurooncol 76, 227–237 (2006). https://doi.org/10.1007/s11060-005-6499-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-005-6499-4

Keywords

Navigation