Skip to main content
Log in

On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Dielectrophoresis, the induced motion of dielectric particles in non-uniform electric fields, enables the separation of suspended bio-particles based on their dimensions or dielectric properties. This work presents a microfluidic system, which utilises a combination of dielectrophoretic (DEP) and hydrodynamic drag forces to separate Lactobacillus bacteria from a background of yeasts. The performance of the system is demonstrated at two operating frequencies of 10 MHz and 100 kHz. At 10 MHz, we are able to trap the yeasts and bacteria at different locations of the microelectrodes as they experience different magnitudes of DEP force. Alternatively, at 100 kHz we are able to trap the bacteria along the microelectrodes, while repelling the yeasts from the microelectrodes and washing them away by the drag force. These separation mechanisms might be applicable to automated lab-on-a-chip systems for the rapid and label-free separation of target bio-particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bercovici M, Kaigala GV, Mach KE, Han CM, Liao JC, Santiago JG (2011) Rapid detection of urinary tract infections using isotachophoresis and molecular beacons. Anal Chem 83:4110–4117

    Article  Google Scholar 

  • Castellarnau M, Errachid A, Madrid C, Juarez A, Samitier J (2006) Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophys J 91:3937–3945

    Article  Google Scholar 

  • Cho YK, Kim S, Lee K, Park C, Lee JG, Ko C (2009) Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip. Electrophoresis 30:3153–3159

    Article  Google Scholar 

  • del Carmen Jaramillo M, Torrents E, Martinez-Duarte R, Madou MJ, Juarez A (2010) On-line separation of bacterial cells by carbon-electrode dielectrophoresis. Electrophoresis 31:2921–2928

    Article  Google Scholar 

  • Gascoyne PRC, Wang XB, Huang Y, Becker FF (1997) Dielectrophoretic separation of cancer cells from blood. IEEE T Ind Appl 33:670–678

    Article  Google Scholar 

  • Hu XY, Bessette PH, Qian JR, Meinhart CD, Daugherty PS, Soh HT (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci USA 102:15757–15761

    Article  Google Scholar 

  • Huang Y, Holzel R, Pethig R, Wang XB (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37:1499–1517

    Article  Google Scholar 

  • Kang YJ, Li DQ (2009) Electrokinetic motion of particles and cells in microchannels. Microfluid Nanofluid 6:431–460

    Article  Google Scholar 

  • Kang YJ, Li DQ, Kalams SA, Eid JE (2008) DC-Dielectrophoretic separation of biological cells by size. Biomed Microdevices 10:243–249

    Article  Google Scholar 

  • Khoshmanesh K, Zhang C, Nahavandi S, Tovar-Lopez FJ, Baratchi S, Hu Z, Mitchell A, Kalantar-zadeh K (2010a) Particle trapping using dielectrophoretically patterned carbon nanotubes. Electrophoresis 31:1366–1375

    Article  Google Scholar 

  • Khoshmanesh K, Zhang C, Tovar-Lopez FJ, Nahavandi S, Baratchi S, Mitchell A, Kalantar-Zadeh K (2010b) Dielectrophoretic-activated cell sorter based on curved microelectrodes. Microfluid Nanofluid 9:411–426

    Article  Google Scholar 

  • Khoshmanesh K, Akagi J, Nahavandi S, Skommer J, Baratchi S, Cooper JM, Kalantar-zadeh K, Williams DE, Wlodkowic D (2011a) Dynamic analysis of drug-induced cytotoxicity using chip-based dielectrophoretic cell immobilization technology. Anal Chem 83:2133–2144

    Article  Google Scholar 

  • Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2011b) Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 26:1800–1814

    Article  Google Scholar 

  • Khoshmanesh K, Kiss N, Nahavandi S, Evans CW, Cooper JM, Williams DE, Wlodkowic D (2011c) Trapping and imaging of micron-sized embryos using dielectrophoresis. Electrophoresis (in press). doi:10.1002/elps.201100160

  • Koo OK, Liu YS, Shuaib S, Bhattacharya S, Ladisch MR, Bashir R, Bhunia AK (2009) Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal Chem 81:3094–3101

    Article  Google Scholar 

  • Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76:1571–1579

    Article  Google Scholar 

  • Li H, Bashir R (2002) Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sens Actut B Chem 86:215–221

    Article  Google Scholar 

  • Mach AJ, Di Carlo D (2010) Continuous scalable blood filtration device using inertial microfluidics. Biotechnol Bioeng 107:302–311

    Article  Google Scholar 

  • Markx GH, Dyda PA, Pethig R (1996) Dielectrophoretic separation of bacteria using a conductivity gradient. J Biotechnol 51:175–180

    Article  Google Scholar 

  • Mazumdar SD, Barlen B, Kaempfer P, Keusgen M (2010) Surface plasmon resonance (SPR) as a rapid tool for serotyping of Salmonella. Biosens Bioelectron 25:967–971

    Article  Google Scholar 

  • Moon HS, Nam YW, Park JC, Jung HI (2009) Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring. Environ Sci Technol 43:5857–5863

    Article  Google Scholar 

  • Moschallski M, Hausmann M, Posch A, Paulus A, Kunz N, Duong TT, Angres B, Fuchsberger K, Steuer H, Stoll D, Werner S, Hagmeyer B, Stelzle M (2010) MicroPrep: chip-based dielectrophoretic purification of mitochondria. Electrophoresis 31:2655–2663

    Article  Google Scholar 

  • Park K, Akin D, Bashir R (2007) Electrical capture and lysis of vaccinia virus particles using silicon nano-scale probe array. Biomed Microdevices 9:877–883

    Article  Google Scholar 

  • Persat A, Santiago JG (2011) MicroRNA profiling by simultaneous selective isotachophoresis and hybridization with molecular beacons. Anal Chem 83:2310–2316

    Article  Google Scholar 

  • Pethig R (2010) Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811

    Article  Google Scholar 

  • Qiu J, Zhou Y, Chen H, Lin J-M (2009) Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics. Talanta 79:787–795

    Article  Google Scholar 

  • Treuer R, Haydel SE (2011) Acid-fast staining and Petroff-Hausser chamber counting of mycobacterial cells in liquid suspension. Curr Prot Microbiol, Chap 10:10A.16.11–10A.16.16

  • Wang XB, Huang Y, Burt JPH, Markx GH, Pethig R (1993) Selective dielectrophoretic confinement of bioparticles in potential-energy wells. J Phys D Appl Phys 26:1278–1285

    Article  Google Scholar 

  • Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8:299–308

    Article  Google Scholar 

  • Yang L (2008) Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta 74:1621–1629

    Article  Google Scholar 

  • Zhou RH, Wang P, Chang HC (2006) Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes. Electrophoresis 27:1376–1385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khashayar Khoshmanesh.

Appendix

Appendix

Dimensions and dielectric properties of spherical yeasts, ellipsoidal yeasts and ellipsoidal Lactobacillus bacteria used in Fig. 1

 

Spherical yeasts (Huang et al. 1992)

Ellipsoidal yeasts (Huang et al. 1992)

Lactobacillus bacteria (Castellarnau et al. 2006)

External diameters (μm)

D = 8

D 1 = 9

D = 0.75

D 2 = 6

L = 1.5

Membrane thickness (nm)

8

8

8

Wall thickness (nm)

220

220

50

Cytoplasm conductivity (S/m)

0.2

0.2

0.48

Cytoplasm permittivity (F/m)

50ε0

50ε0

50ε0

Membrane conductivity (S/m)

25 × 10−8

25 × 10−8

259 × 10−6

Membrane permittivity (F/m)

0

0

9.8ε0

Wall conductivity (S/m)

14 × 10−3

14 × 10−3

58 × 10−3

Wall permittivity (F/m)

60ε0

60ε0

78ε0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoshmanesh, K., Baratchi, S., Tovar-Lopez, F.J. et al. On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis. Microfluid Nanofluid 12, 597–606 (2012). https://doi.org/10.1007/s10404-011-0900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0900-8

Keywords

Navigation