Skip to main content

Advertisement

Log in

Widespread Co-occurrence of Virulent Pathogens Within California Amphibian Communities

  • Short Communication
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

The chytrid fungus Batrachochytrium dendrobatidis, ranaviruses, and trematodes (Ribeiroia ondatrae and echinostomes) are highly virulent pathogens known to infect amphibians, yet the extent to which they co-occur within amphibian communities remains poorly understood. Using field surveillance of 85 wetlands in the East Bay region of California, USA, we found that 68% of wetlands had ≥2 pathogens and 36% had ≥3 pathogens. Wetlands with high pathogen species richness also tended to cluster spatially. Our results underscore the need for greater integration of multiple pathogens and their interactions into amphibian disease research and conservation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

References

  • Annis SL, Dastoor FP, Ziel H, Daszak P, and Longcore JE (2004). A DNA-based assay identifies Batrachochytrium dendrobatidis in amphibians. Journal of Wildlife Diseases 40:420-428.

    PubMed  CAS  Google Scholar 

  • Bentwich Z, Kalinkovich A, and Weisman Z (1995). Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunology Today 16:187-191.

    Article  PubMed  CAS  Google Scholar 

  • Bosch J, Carrascal LM, Duran L, Walker S, and Fisher MC (2007). Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there a link? Proceedings of the Royal Society B-Biological Sciences 274:253-260.

    Article  Google Scholar 

  • Collins JP, and Storfer A (2003). Global amphibian declines: sorting the hypotheses. Diversity and Distributions 9:89-98.

    Article  Google Scholar 

  • Cooney RP, Pantos O, Le Tissier MDA, Barer MR, O’Donnell AG, and Bythell JC (2002). Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environmental Microbiology 4:401-413.

    Article  PubMed  Google Scholar 

  • Densmore CL, and Green DE (2007). Diseases of amphibians. Ilar Journal 48:235-254.

    PubMed  CAS  Google Scholar 

  • Druilhe P, Tall A, and Sokhna C (2005). Worms can worsen malaria: towards a new means to roll back malaria? Trends in Parasitology 21:359-362.

    Article  PubMed  Google Scholar 

  • Ezenwa VO, Etienne RS, Luikart G, Beja-Pereira A, and Jolles AE (2010). Hidden consequences of living in a wormy world: Nematode-induced immune suppression facilitates tuberculosis invasion in African buffalo. American Naturalist 176:613-624.

    Article  PubMed  Google Scholar 

  • Gahl MK, and Calhoun AJK (2008). Landscape setting and risk of Ranavirus mortality events. Biological Conservation 141:2679-2689.

    Article  Google Scholar 

  • Gray MJ, Miller DL, and Hoverman JT (2009). Ecology and pathology of amphibian ranaviruses. Diseases of Aquatic Organisms 87:243-266.

    Article  PubMed  Google Scholar 

  • Green DE, Converse KA, and Schrader AK (2002). Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996–2001. Annals of the New York Academy of Sciences 969:323-339.

    Article  PubMed  Google Scholar 

  • Greer AL, Briggs CJ, and Collins JP (2008). Testing a key assumption of host-pathogen theory: density and disease transmission. Oikos 117:1667-1673.

    Article  Google Scholar 

  • Greer AL, Brunner JL, and Collins JP (2009). Spatial and temporal patterns of Ambystoma tigrinum virus (ATV) prevalence in tiger salamanders Ambystoma tigrinum nebulosum. Diseases of Aquatic Organisms 85:1-6.

    Article  PubMed  Google Scholar 

  • Hartson RB, Orlofske SA, Melin VE, Dillon RT, and Johnson PTJ (2012). Land use and wetland spatial position jointly determine amphibian parasite communities. Ecohealth 8:485-500.

    Article  Google Scholar 

  • Hoverman JT, Gray MJ, Haislip NA, and Miller DL (2011). Phylogeny, life history, and ecology contribute to differences in amphibian susceptibility to ranaviruses. Ecohealth 8:301-319.

    Article  PubMed  Google Scholar 

  • Hoverman JT, Gray MJ, Miller DL, and Haislip NA (2012). Widespread occurrence of ranavirus in pond-breeding amphibian populations. Ecohealth. 9:36-48

    Article  PubMed  Google Scholar 

  • Johnson PTJ, and Buller ID (2011). Parasite competition hidden by correlated coinfection: using surveys and experiments to understand parasite interactions. Ecology 92:535-541.

    Article  PubMed  Google Scholar 

  • Johnson PTJ, and McKenzie VJ (2008). Effects of environmental change on helminth infections in amphibians: exploring the emergence of Ribeiroia and Echinostoma infections in North America. in B. Fried and R. Toledo, editors. The Biology of Echinostomes. Springer.

    Google Scholar 

  • Johnson PTJ, Lunde KB, Thurman EM, Ritchie EG, Wray SN, Sutherland DR, et al. (2002). Parasite (Ribeiroia ondatrae) infection linked to amphibian malformations in the western United States. Ecological Monographs 72:151-168.

    Article  Google Scholar 

  • Johnson PTJ, Chase JM, Dosch KL, Hartson RB, Gross JA, Larson DJ, et al. (2007). Aquatic eutrophication promotes pathogenic infection in amphibians. Proceedings of the National Academy of Sciences of the United States of America 104:15781-15786.

    Article  PubMed  CAS  Google Scholar 

  • Johnson PTJ, Rohr JR, Hoverman JT, Kellermanns E, Bowerman J, and Lunde KB (2012). Living fast and dying of infection: Host life history explains interspecific variation in disease risk. Ecology Letters 15:235-242.

    Article  PubMed  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. (2008). Global trends in emerging infectious diseases. Nature 451:990-994.

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick AM, Briggs CJ, and Daszak P (2010). The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology & Evolution 25:109-118.

    Article  Google Scholar 

  • Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. (2006). Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America 103:3165-3170.

    Article  PubMed  CAS  Google Scholar 

  • Muths E, Gallant AL, Campbell EHC, Battaglin WA, Green DE, Staiger JS, et al. (2006) The Amphibian Research and Monitoring Initiative (ARMI): 5-year report: U.S. Geological Survey Scientific Investigations Report 2006-5224

  • Ouellet M, Mikaelian I, Pauli BD, Rodrigue J, and Green DM (2005). Historical evidence of widespread chytrid infection in North American amphibian populations. Conservation Biology 19:1431-1440.

    Article  Google Scholar 

  • Padgett-Flohr GE, and Hopkins RL (2010). Landscape epidemiology of Batrachochytrium dendrobatidis in central California. Ecography 33:688-697.

    Article  Google Scholar 

  • Raffel TR, LeGros RP, Love BC, Rohr JR, and Hudson PJ (2009). Parasite age-intensity relationships in red-spotted newts: Does immune memory influence salamander disease dynamics? International Journal for Parasitology 39:231-241.

    Article  PubMed  Google Scholar 

  • Raffel TR, Lloyd-Smith JO, Sessions SK, Hudson PJ, and Rohr JR (2011). Does the early frog catch the worm? Disentangling potential drivers of a parasite age-intensity relationship in tadpoles. Oecologia 165:1031-1042.

    Article  PubMed  Google Scholar 

  • Rohr JR, Schotthoefer AM, Raffel TR, Carrick HJ, Halstead N, Hoverman JT, et al. (2008). Agrochemicals increase trematode infections in a declining amphibian species. Nature 455:1235-1250.

    Article  PubMed  CAS  Google Scholar 

  • Schock DM, Ruthig GR, Collins JP, Kutz SJ, Carriere S, Gau RJ, et al. (2010). Amphibian chytrid fungus and ranaviruses in the Northwest Territories, Canada. Diseases of Aquatic Organisms 92:231-240.

    Article  PubMed  Google Scholar 

  • Schotthoefer AM, Rohr JR, Cole RA, Koehler AV, Johnson CM, Johnson LB, et al. (2011). Effects of wetland vs. landscape variables on parasite communities of Rana pipiens: links to anthropogenic factors. Ecological Applications 21:1257-1271.

    Article  PubMed  Google Scholar 

  • Searle CL, Gervasi SS, Hua J, Hammond JI, Relyea RA, Olson DH, et al. (2011). Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conservation Biology 25:965–974.

    Article  PubMed  CAS  Google Scholar 

  • Tompkins DM, Dunn AM, Smith MJ, and Telfer S (2010). Wildlife diseases: from individuals to ecosystems. Journal of Animal Ecology 80:19-38.

    Article  PubMed  Google Scholar 

  • Wake DB, and Vredenburg VT (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences 105:11466-11473.

    Article  CAS  Google Scholar 

  • Wright KM, and Whitaker BR (2001). Amphibian medicine and captive husbandry. Krieger Publishing Company, Malabar, Florida.

    Google Scholar 

Download references

Acknowledgments

This project was supported by the grants from NSF (DEB-0553768, MRI-0923419) and a fellowship from the David and Lucile Packard Foundation. We thank S. Paull, J. McFarland, K. Lunde, and K. Gietzen for assistance in the field surveys and I. Buller, E. Kellermans, and B. LaFonte for conducting amphibian necropsies. J. Rohr and several anonymous reviewers provided helpful comments on the manuscript. We gratefully acknowledge support and property access from D. Bell of East Bay Regional Parks, D. Rocha of Santa Clara County Parks, M. Hamilton of the UC Reserve System, J. Smith of East Bay Municipal Utility District, S. Abbors of Midpeninsula Open Space, and K. Fleming of the California State Parks System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason T. Hoverman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoverman, J.T., Mihaljevic, J.R., Richgels, K.L.D. et al. Widespread Co-occurrence of Virulent Pathogens Within California Amphibian Communities. EcoHealth 9, 288–292 (2012). https://doi.org/10.1007/s10393-012-0778-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-012-0778-2

Keywords

Navigation