Skip to main content

Advertisement

Log in

What is better in TRAM flap survival: LLLT single or multi-irradiation?

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser therapy (LLLT) has been used with the aim of improving vascular perfusion of the skin and musculocutaneous flaps. This study evaluated the effect of LLLT on transverse rectus abdominis musculocutaneous flap (TRAM) viability, vascular angiogenesis, and VEGF release. Eighty-four Wistar rats were randomly divided into seven groups with 12 rats in each group. Group 1 received sham laser treatment; group 2, 3 J/cm2 at 1 point; group 3, 3 J/cm2 at 24 points; group 4, 72 J/cm2 at 1 point; group 5, 6 J/cm2 at 1 point; group 6, 6 J/cm2 at 24 points; and group 7, 144 J/cm2 at 1 point. All experimental groups underwent LLLT immediately after the TRAM operation and on the following 2 days; thus, animals underwent 3 days of treatment. The percentage of skin flap necrosis area was calculated on the fourth postoperative day using the paper template method, and two skin samples were collected using a 1-cm2 punch to evaluate alpha smooth muscle actin (1A4) and VEGF levels in blood vessels. Significant differences were found in necrosis percentage, and higher values were seen in group 1 than in the other groups. Statistically significant differences were not found among groups 3 to 7 (p < 0.292). Groups 5 and 7 showed significantly higher VEGF levels compared to other groups. Groups 3 and 5 had an increase in levels of blood vessels compared to other groups. LLLT at energy densities of 6 to 144 J/cm2 was efficient to increase angiogenesis and VEGF levels and promote viability in TRAM flaps in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hartrampf CR, Scheflan M, Black PW (1982) Breast reconstruction with a transverse abdominal island flap. Plast Reconstr Surg 69(2):216–225

    Article  PubMed  CAS  Google Scholar 

  2. Arnez ZM, Khan U, Pogorelec D, Planinsek F (1999) Rational selection of flaps from the abdomen in breast reconstruction to reduce donor site morbidity. Br J Plast Surg 52(5):351–354

    Article  PubMed  CAS  Google Scholar 

  3. Veiga DF, Neto MS, Garcia EB, Filho JV, Juliano Y, Ferreira LM, Rocha JL (2002) Evaluations of the aesthetic results and patient satisfaction with the late pedicled TRAM flap breast reconstruction. Ann Plast Surg 48(5):515–520

    Article  PubMed  Google Scholar 

  4. Rezende FC, Gomes HC, Lisboa B, Lucca AF, Han SW, Ferreira LM (2010) Electroporation of vascular endothelial growth factor gene in a unipedicle transverse rectus abdominis myocutaneous flap reduces necrosis. Ann Plast Surg 64:242–246, United States

    Article  PubMed  CAS  Google Scholar 

  5. Kim EK, Lee TJ, Eom JS (2007) Comparison of fat necrosis between zone II and zone III in pedicled transverse rectus abdominis musculocutaneous flaps: a prospective study of 400 consecutive cases. Ann Plast Surg 59:256–259, United States

    Article  PubMed  CAS  Google Scholar 

  6. Hallock GG, Rice DC (2004) Comparison of TRAM and DIEP flap physiology in a rat model. Plast Reconstr Surg 114:1179–1184, United States

    PubMed  Google Scholar 

  7. Carlson GW (1994) Breast reconstruction. Surgical options and patient selection. Cancer 74(1 Suppl):436–439

    Article  PubMed  CAS  Google Scholar 

  8. Komorowska-Timek E, Timek TA, Brevetti LS, Zhang F, Lineaweaver WC, Buncke HJ (2004) The effect of single administration of vascular endothelial growth factor or l-arginine on necrosis and vasculature of the epigastric flap in the rat model. Br J Plast Surg 57:317–325, England

    Article  PubMed  Google Scholar 

  9. Gherardini G, Gurlek A, Milner SM, Matarasso A, Evans GR, Jernbeck J, Lundeberg T (1998) Calcitonin gene-related peptide improves skin flap survival and tissue inflammation. Neuropeptides 32:269–273, Scotland

    Article  PubMed  CAS  Google Scholar 

  10. Niina Y, Ikeda K, Iwa M, Sakita M (1997) Effects of electroacupuncture and transcutaneous electrical nerve stimulation on survival of musculocutaneous flap in rats. Am J Chin Med 25:273–280, United States

    Article  PubMed  CAS  Google Scholar 

  11. Costa MS, Pinfildi CE, Gomes HC, Liebano RE, Arias VE, Silveira TS, Ferreira LM (2010) Effect of low-level laser therapy with output power of 30 mW and 60 mW in the viability of a random skin flap. Photomed Laser Surg 28(1):57–61

    Article  PubMed  Google Scholar 

  12. Pinfildi CE, Liebano RE, Hochman BS, Ferreira LM (2005) Helium-neon laser in viability of random skin flap in rats. Lasers Surg Med 37(1):74–77

    Article  PubMed  Google Scholar 

  13. Kami T (1992) The experimental effect of low-energy laser on skin flap survival. Plast Reconstr Surg 90(6):1127–1128

    PubMed  CAS  Google Scholar 

  14. Liebano RE, Abla LE, Ferreira LM (2008) Effect of low-frequency transcutaneous electrical nerve stimulation (TENS) on the viability of ischemic skin flaps in the rat: an amplitude study. Wound Repair Regen 16:65–69, United States

    Article  PubMed  Google Scholar 

  15. Kjartansson J, Lundeberg T (1990) Effects of electrical nerve stimulation (TENS) in ischemic tissue. Scand J Plast Reconstr Surg Hand Surg 24(2):129–134

    Article  PubMed  CAS  Google Scholar 

  16. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974, England

    Article  PubMed  CAS  Google Scholar 

  17. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936, England

    Article  PubMed  CAS  Google Scholar 

  18. Prado R, Neves L, Marcolino A, Ribeiro T, Pinfildi C, Ferreira L, Thomazini J, Piccinato C (2010) Effect of low-level laser therapy on malondialdehyde concentration in random cutaneous flap viability. Photomed Laser Surg 28(3):379–384

    Article  PubMed  Google Scholar 

  19. Pinfildi CE, Liebano RE, Hochman BS, Enokihara M, Lippert R, Gobbato RC, Ferreira LM (2009) Effect of low-level laser therapy on mast cells in viability of the transverse rectus abdominis musculocutaneous flap. Photomed Laser Surg 27(2):337–343

    Article  PubMed  Google Scholar 

  20. Sasaki GH, Pang CY (1980) Hemodynamics and viability of acute neurovascular island skin flaps in rats. Plast Reconstr Surg 65(2):152–158

    Article  PubMed  CAS  Google Scholar 

  21. Sano K, Hallock GG, Wasser TE, Robson PA, Rice DC (2001) Comparison of a new method for computer analysis with standard techniques for measuring survival rates in the rat transverse rectus abdominis musculocutaneous flap. Ann Plast Surg 47(6):647–651

    Article  PubMed  CAS  Google Scholar 

  22. Dunn RM, Huff W, Mancoll J (1993) The rat rectus abdominis myocutaneous flap: a true myocutaneous flap model. Ann Plast Surg 31(4):352–357

    Article  PubMed  CAS  Google Scholar 

  23. Flamme I, von Reutern M, Drexler HC, Syed-Ali S, Risau W (1995) Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol 171:399–414, United States

    Article  PubMed  CAS  Google Scholar 

  24. de Freitas AL, Gomes HC, Lisboa BC, Arias V, Han SW, Ferreira LM (2010) Effect of gene therapy with vascular endothelial growth factor after abdominoplasty on TRAM flap viability in a rat model. Plast Reconstr Surg 125:1343–1351, United States

    Article  PubMed  Google Scholar 

  25. Zhang F, Fischer K, Komorowska-Timek E, Guo M, Cui D, Dorsett-Martin W, Buncke HJ, Lineaweaver WC (2001) Improvement of skin paddle survival by application of vascular endothelial growth factor in a rat TRAM flap model. Ann Plast Surg 46(3):314–319

    Article  PubMed  CAS  Google Scholar 

  26. Li QF, Reis ED, Zhang WX, Silver L, Fallon JT, Weinberg H (2000) Accelerated flap prefabrication with vascular endothelial growth factor. J Reconstr Microsurg 16(1):45–49

    Article  PubMed  CAS  Google Scholar 

  27. Tuby H, Maltz L, Oron U (2006) Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg Med 38(7):682–688

    Article  PubMed  Google Scholar 

  28. Kami T, Yoshimura Y, Nakajima T, Ohshiro T, Fujino T (1985) Effects of low-power diode lasers on flap survival. Ann Plast Surg 14(3):278–283

    Article  PubMed  CAS  Google Scholar 

  29. Smith RJ, Birndorf M, Gluck G, Hammond D, Moore WD (1992) The effect of low-energy laser on skin-flap survival in the rat and porcine animal models. Plast Reconstr Surg 89(2):306–310

    Article  PubMed  CAS  Google Scholar 

  30. Kubota J (2002) Effects of diode laser therapy on blood flow in axial pattern flaps in the rat model. Lasers Med Sci 17(3):146–153

    Article  PubMed  CAS  Google Scholar 

  31. Amir A, Solomon AS, Giler S, Cordoba M, Hauben DJ (2000) The influence of helium-neon laser irradiation on the viability of skin flaps in the rat. Br J Plast Surg 53(1):58–62

    Article  PubMed  CAS  Google Scholar 

  32. Prado RP, Pinfildi CE, Liebano RE, Hochman BS, Ferreira LM (2009) Effect of application site of low-level laser therapy in random cutaneous flap viability in rats. Photomed Laser Surg 27(3):411–416

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Conflict of interest

I have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Eduardo Pinfildi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinfildi, C.E., Hochman, B.S., Nishioka, M.A. et al. What is better in TRAM flap survival: LLLT single or multi-irradiation?. Lasers Med Sci 28, 755–761 (2013). https://doi.org/10.1007/s10103-012-1130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1130-3

Keywords

Navigation