Skip to main content

Advertisement

Log in

Abdominal wall reconstruction by combined use of biological mesh and autogenous pedicled demucosalized small intestinal sheet: a case report

  • Case Report
  • Published:
Hernia Aims and scope Submit manuscript

Abstract

Since abdominal wall defects pose a tough challenge to surgeons, methods to solve the problem are attractive. This case report concerns about the combined use of biological mesh and autogenous pedicled demucosalized small intestinal sheet for abdominal wall reconstruction. An 8-month follow-up revealed favorable outcome. Properties that make the method appealing include decreased infection risk, increased strength and viability. It is a novel, safe, and effective method for abdominal wall reconstruction but still requires further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Dorai AA, Halim AS (2007) Extended double pedicle free tensor fascia latae myocutaneous flap for abdominal wall reconstruction. Singapore Med J 48(5):e141–e145

    PubMed  CAS  Google Scholar 

  2. Usher FC, Ochsner J, Tuttle LL Jr (1958) Use of marlex mesh in the repair of incisional hernias. Am Surg 24(12):969–974

    PubMed  CAS  Google Scholar 

  3. Liu L, Li JS, Li N, Ren JA, Zhao YZ (2009) Reconstruction of infected complex abdominal wall defects with autogenous pedicled demucosalized small intestinal sheet. Surgery 145(1):114–119

    Article  PubMed  Google Scholar 

  4. Luijendijk RW, Hop WC, van den Tol MP, de Lange DC, Braaksma MM, IJzermans JN, Boelhouwer RU, de Vries BC, Salu MK, Wereldsma JC, Bruijninckx CM, Jeekel J (2000) A comparison of suture repair with mesh repair for incisional hernia. N Engl J Med 343(6):392–398

    Article  PubMed  CAS  Google Scholar 

  5. Franklin ME Jr, Gonzalez JJ Jr, Michaelson RP, Glass JL, Chock DA (2002) Preliminary experience with new bioactive prosthetic material for repair of hernias in infected fields. Hernia 6(4):171–174

    Article  PubMed  Google Scholar 

  6. Bellows CF, Alder A, Helton WS (2006) Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Expert Rev Med Devices 3(5):657–675

    Article  PubMed  Google Scholar 

  7. de Moya MA, Dunham M, Inaba K, Bahouth H, Alam HB, Sultan B, Namias N (2008) Long-term outcome of acellular dermal matrix when used for large traumatic open abdomen. J Trauma 65(2):349–353

    Article  PubMed  Google Scholar 

  8. Patton JH Jr, Berry S, Kralovich KA (2007) Use of human acellular dermal matrix in complex and contaminated abdominal wall reconstructions. Am J Surg 193(3):360–363 discussion 363

    Article  PubMed  Google Scholar 

  9. Bellows CF, Albo D, Berger DH, Awad SS (2007) Abdominal wall repair using human acellular dermis. Am J Surg 194(2):192–198

    Article  PubMed  Google Scholar 

  10. Franklin ME Jr, Gonzalez JJ Jr, Glass JL (2004) Use of porcine small intestinal submucosa as a prosthetic device for laparoscopic repair of hernias in contaminated fields: 2-year follow-up. Hernia 8(3):186–189

    Article  PubMed  Google Scholar 

  11. Simmermacher RK, van der Lei B, Schakenraad JM, Bleichrodt RP (1991) Improved tissue ingrowth and anchorage of expanded polytetrafluoroethylene by perforation: an experimental study in the rat. Biomaterials 12(1):22–24

    Article  PubMed  CAS  Google Scholar 

  12. van der Lei B, Bleichrodt RP, Simmermacher RK, van Schilfgaarde R (1989) Expanded polytetrafluoroethylene patch for the repair of large abdominal wall defects. Br J Surg 76(8):803–805

    Article  PubMed  Google Scholar 

  13. Bellon JM, Contreras LA, Bujan J (2000) Ultrastructural alterations of polytetrafluoroethylene prostheses implanted in abdominal wall provoked by infection: clinical and experimental study. World J Surg 24(5):528–531 discussion 532

    Article  PubMed  CAS  Google Scholar 

  14. Dinsmore RC, Calton WC Jr, Harvey SB, Blaney MW (2000) Prevention of adhesions to polypropylene mesh in a traumatized bowel model. J Am Coll Surg 191(2):131–136

    Article  PubMed  CAS  Google Scholar 

  15. Gupta A, Zahriya K, Mullens PL, Salmassi S, Keshishian A (2006) Ventral herniorrhaphy: experience with two different biosynthetic mesh materials, Surgisis and Alloderm. Hernia 10(5):419–425

    Article  PubMed  CAS  Google Scholar 

  16. Agresta F, Bedin N (2008) Transabdominal laparoscopic inguinal hernia repair: is there a place for biological mesh? Hernia 12(6):609–612

    Article  PubMed  CAS  Google Scholar 

  17. Catena F, Ansaloni L, Leone A, De Cataldis A, Gagliardi S, Gazzotti F, Peruzzi S, Agrusti S, D’Alessandro L, Taffurelli M (2005) Lichtenstein repair of inguinal hernia with Surgisis inguinal hernia matrix soft-tissue graft in immunodepressed patients. Hernia 9(1):29–31

    Article  PubMed  CAS  Google Scholar 

  18. Puccio F, Solazzo M, Marciano P (2005) Comparison of three different mesh materials in tension-free inguinal hernia repair: prolene versus Vypro versus surgisis. Int Surg 90(3 Suppl):S21–S23

    PubMed  CAS  Google Scholar 

  19. Mathes SJ, Steinwald PM, Foster RD, Hoffman WY, Anthony JP (2000) Complex abdominal wall reconstruction: a comparison of flap and mesh closure. Ann Surg 232(4):586–596

    Article  PubMed  CAS  Google Scholar 

  20. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934

    PubMed  CAS  Google Scholar 

  21. Greif R, Akca O, Horn EP, Kurz A, Sessler DI (2000) Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N Engl J Med 342(3):161–167

    Article  PubMed  CAS  Google Scholar 

  22. Monaco JL, Lawrence WT (2003) Acute wound healing an overview. Clin Plast Surg 30(1):1–12

    Article  PubMed  Google Scholar 

  23. Menon NG, Rodriguez ED, Byrnes CK, Girotto JA, Goldberg NH, Silverman RP (2003) Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. Ann Plast Surg 50(5):523–527

    Article  PubMed  Google Scholar 

  24. Fu X, Shen Z, Chen Y, Xie J, Guo Z, Zhang M, Sheng Z (2000) Recombinant bovine basic fibroblast growth factor accelerates wound healing in patients with burns, donor sites and chronic dermal ulcers. Chin Med J (Engl) 113(4):367–371

    CAS  Google Scholar 

  25. Yao Y, Fei C, Li Z (2001) A comparative study on wound healing treated by different doses of bovine basic fibroblast growth factor (bFGF). Zhonghua Shao Shang Za Zhi 17(1):10–12

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 30872456) and the Climbing Program in Natural Science Foundation of Jiangsu Province for Distinguished Scholars (No. BK2010017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Ren, J., Liu, S. et al. Abdominal wall reconstruction by combined use of biological mesh and autogenous pedicled demucosalized small intestinal sheet: a case report. Hernia 17, 53–57 (2013). https://doi.org/10.1007/s10029-012-0965-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10029-012-0965-7

Keywords

Navigation