Skip to main content
Log in

Electrochemical dissolution behaviour of Ti90Al6V4 and Ti60Al40 used for ECM applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The dissolution behaviour of two different titanium alloys in aqueous electrolytes has been investigated. Therefore, a commercial titanium grade 5 (Ti90Al6V4) alloy and a self-produced Ti60Al40 alloy were compared. After preparation by arc melting and a heat treatment, an extensive characterization of the alloy by X-ray diffraction and energy-dispersive X-ray spectroscopy has been performed. The electrochemical behaviour of the alloys in different electrolytes was investigated using different techniques like linear sweep voltammetry and electrochemical impedance spectroscopy. An influence of the electrolyte composition and the titanium content of the alloy on the dissolution process could be observed. Higher titanium content of the alloy impedes the dissolution process. An increase of chloride ions in the electrolyte facilitates the dissolution. The results could be proved by an electrochemical machining (ECM) process in lab scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Long M, Rack HJ (1998) Biomaterials 19:1621–1639

    Article  CAS  Google Scholar 

  2. Rack HJ, Qazi JI (2006) Mater Sci Eng C 26:1269–1277

    Article  CAS  Google Scholar 

  3. Wang K (1996) Mater Sci Eng A 213:134–137

    Article  Google Scholar 

  4. Peters M, Kumpfert J, Ward C, Leyens C (2003) Adv Eng Mater 5:419–427

    Article  CAS  Google Scholar 

  5. Boyer RR (1996) Mater Sci Eng A 213:103–114

    Article  Google Scholar 

  6. Niinomi M (1998) Mater Sci Eng A 213:231–236

    Article  Google Scholar 

  7. Froes FH, Suryanarayana C, Eliezer D (1992) J Mater Sci 27:5113–5140

    Article  CAS  Google Scholar 

  8. Aspinwall DK, Dewes RC, Mantle AL (2005) CIRP Manuf Technol 54:99–104

    Article  Google Scholar 

  9. Bhattacharyya B, Mitra S, Boro AK (2002) Robot CIM-INT Manuf 18:283–289

    Article  Google Scholar 

  10. van Noort R (1987) J Mater Sci 22:3801–3811

    Article  Google Scholar 

  11. de Assis SL, Wolynec S, Costa I (2006) Electrochim Acta 51:1815–1819

    Article  Google Scholar 

  12. González JEG, Mirza-Rosca JC (1999) J Electroanal Chem 471:109–115

    Article  Google Scholar 

  13. Lohrengel MM, Rosenkranz C, Klüppel I, Moehring A, Bettermann H, Van den Bossche B, Deconinck J (2004) Electrochim Acta 49:2863–2870

    Article  CAS  Google Scholar 

  14. Eppelsheimer D, Perman R (1950) Nature 166:960

    Article  CAS  Google Scholar 

  15. Downs RT, Bartelmehs KL, Gibbs GV, Boisen MB (1993) Am Mineral 78:1104–1107

    CAS  Google Scholar 

  16. Murray JL (1988) Metall Trans A 19:243–247

    Article  Google Scholar 

  17. Schenk R (2001) The corrosion properties of titanium and titanium alloys. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in Medicine. Springer, Berlin Heidelberg, pp 145–170

    Chapter  Google Scholar 

  18. Pan J, Thierry D, Leygraf C (1996) Electrochim Acta 41:1143–1153

    Article  CAS  Google Scholar 

  19. Tomashov ND, Chernova GP, Ruscol YS, Ayuyan GA (1974) Electrochim Acta 9:159–172

    Article  Google Scholar 

  20. Hefny MM, Mazhar AA, El Basiouny MS (1982) Br Corros J 17:38–41

    Article  CAS  Google Scholar 

  21. El Basiouny MS, Mazhar AA (1982) Corrosion 38:237–240

    Article  Google Scholar 

  22. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musian M (2010) J Electrochem Soc 157:C452–C457

    Article  CAS  Google Scholar 

  23. Bannard J (1976) J Appl Electrochem 6:477–483

    Article  CAS  Google Scholar 

  24. Rolsten RF (1968) J Appl Chem 18:292–296

    Article  CAS  Google Scholar 

  25. Casillas N, Charlebois SJ, Smyrl WH, White HS (1993) J Electrochem Soc 140:L142–L145

    Article  CAS  Google Scholar 

  26. Faraday M (1834) Philos Trans R Soc 124:77–122

    Article  Google Scholar 

  27. Da Silva Neto JC (2009) Proceedings of COBEM 2009

  28. Wang S, Zeng Y, Liu Y, Zhu D (2012) Int J Adv Manuf Technol 63:25–32

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the European Union within the Interreg IV A programme “Initiative PRECISE”. We thank Prof. Dr. Rolf Hempelmann and Prof. Dr.-Ing. Dirk Bähre for fruitful discussions and Elfi Jungblut, Dipl.-Ing. Sylvia Kuhn, M. Sc. Dan Durneata, Andreas Kirsch and Dr. Nathalie Kunkel for the experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Natter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinmann, M., Stolpe, M., Weber, O. et al. Electrochemical dissolution behaviour of Ti90Al6V4 and Ti60Al40 used for ECM applications. J Solid State Electrochem 19, 485–495 (2015). https://doi.org/10.1007/s10008-014-2621-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2621-x

Keywords

Navigation