Skip to main content
Log in

Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polymer complexes of nickel with SalEn-type ligands (SalEn = N,N′-bis (salicylidene) ethylenediamine) possess a number of unique properties, such as high redox conductivity, electrochromic behavior and selective catalytic activity in heterogeneous reactions. However, the mechanism of their redox transformation is still not clear. To understand this mechanism, we have performed a combined study of electrochemical and spectral properties of polymers derived from nickel complexes with various SalEn-type ligands containing methoxy substituents in phenyl rings, and methyl substituents in imino bridges. Experimental data were correlated with the results of density functional theory (DFT) calculations for model chains consisting of one to four monomer units. We found that, in acetonitrile-based supporting electrolyte, oxidation of such complexes, regardless of ligand substituents, proceeds via two routes, leading to formation of two oxidized forms: for the first one, a good correlation between experimental and computation results was observed. It has been demonstrated that positive charge in this form is delocalized in the phenyl moieties of ligand. The second oxidized form is stable only in coordinating solvents at high electrode polarizations and is likely to have the charge localized on the central metal atom, stabilized by axial coordination of solvent molecules. The complicated electrochemical response of each of the polymers that we have studied can be explained in the scope of this model without any additional assumptions by taking into account conversion of one oxidized form into another. Understanding the solvent effect on the oxidation route of the complexes will enable controlling their catalytic properties and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Popeko IE, Vasilev VV, Timonov AM, Shagisultanova GA (1990) Electrochemical-behavior of palladium (II) complexes with schiff-bases and synthesis of Pd (II)-Pd (IV) mixed-ligand complex. Zh Neorg Khim 35:933–937

    CAS  Google Scholar 

  2. Dahm CE, Peters DG (1996) Catalytic reduction of α, ω-dihaloalkanes with nickel (I) salen as a homogeneous-phase and polymer-bound mediator. J Electroanal Chem 406:119–129

    Article  Google Scholar 

  3. Dahm CE, Peters DG, Simonet J (1996) Electrochemical and spectroscopic characterization of anodically formed nickel salen polymer films on glassy carbon, platinum, and optically transparent tin oxide electrodes in acetonitrile containing tetramethylammonium tetrafluoroborate. J Electroanal Chem 410:163–171

    Article  Google Scholar 

  4. Leung ACW, Maclachlan MJ (2007) Schiff base complexes in macromolecules. J Inorg Organomet Polymers Mater 17:57–89

    Article  CAS  Google Scholar 

  5. Gao F, Li JL, Kang FY, Zhang YK, Wang XD, Ye F, Yang J (2011) Preparation and characterization of a poly[Ni(salen)]/multiwalled carbon nanotube composite by in situ electropolymerization as a capacitive material. J Phys Chem C 115:11822–11829

    Article  CAS  Google Scholar 

  6. Popeko IE, Timonov AM, Shagisultanova GA (1990) Electrocatalytic properties of a chemically modified electrode based on the Pd (IV)-Pd (II) complex with Bis (Salicylidene)-ethylenediamine. J Appl Chem USSR 63:2033–2036

    Google Scholar 

  7. Chepurnaya IA, Logvinov SA, Karushev MP, Timonov AM, Malev VV (2012) Modification of supercapacitor electrodes with polymer metallocomplexes: methods and results. Russ J Electrochem 48:538–544

    Article  CAS  Google Scholar 

  8. Zhang YK, Li JL, Gao F, Kang FY, Wang XD, Ye F, Yang J (2012) Electropolymerization and electrochemical performance of salen-type redox polymer on different carbon supports for supercapacitors. Electrochim Acta 76:1–7

    Article  CAS  Google Scholar 

  9. Vilas-Boas M, Freire C, De Castro B, Christensen PA, Hillman AR (1997) New insights into the structure and properties of electroactive polymer films derived from [Ni(salen)]. Inorg Chem 36:4919–4929

    Article  CAS  Google Scholar 

  10. Vilas-Boas M, Santos IC, Henderson MJ, Freire C, Hillman AR, Vieil E (2003) Electrochemical behavior of a new precursor for the design of poly[Ni(salen)]-based modified electrodes. Langmuir 19:7460–7468

    Article  CAS  Google Scholar 

  11. Vilas-Boas M, Henderson MJ, Freire C, Hillman AR, Vieil E (2000) A combined electrochemical quartz-crystal microbalance probe beam deflection (EQCM-PBD) study of solvent and ion transfers at a poly[Ni(saltMe)]-modified electrode during redox switching. Chem Eur J 6:1160–1167

    Article  CAS  Google Scholar 

  12. Vilas-Boas M, Freire C, De Castro B, Christensen PA, Hillman AR (2001) Spectroelectrochemical characterisation of poly[Ni(saltMe)]-modified electrodes. Chem Eur J 7:139–150

    Article  CAS  Google Scholar 

  13. Hamnett A, Abel J, Eameaim J, Christensen P, Timonov A, Vasilyeva S (1999) A study of the polymerisation and electrochemical cycling of Pd methoxy-Salen derivatives using fast ellipsometry and FT-infrared spectroscopy. Phys Chem Chem Phys 1:5147–5156

    Article  CAS  Google Scholar 

  14. Shimazaki Y, Yajima T, Tani F, Karasawa S, Fukui K, Naruta Y, Yamauchi O (2007) Syntheses and electronic structures of one-electron-oxidized group 10 metal (II)-(disalicylidene) diamine complexes (metal = Ni, Pd, Pt). J Am Chem Soc 129:2559–2568

    Article  CAS  Google Scholar 

  15. Shimazaki Y, Stack TDP, Storr T (2009) Detailed evaluation of the geometric and electronic structures of one-electron oxidized group 10 (Ni, Pd, and Pt) metal (II)-(disalicylidene) diamine complexes. Inorg Chem 48:8383–8392

    Article  CAS  Google Scholar 

  16. Orio M, Jarjayes O, Kanso H, Philouze C, Neese F, Thomas F (2010) X-ray structures of copper (II) and nickel (II) radical salen complexes: the preference of galactose oxidase for copper (II). Angew Chem Int Ed 49:4989–4992

    Article  CAS  Google Scholar 

  17. Storr T, Wasinger EC, Pratt RC, Stack TDP (2007) The geometric and electronic structure of a one-electron-oxidized nickel (II) bis (salicylidene) diamine complex. Angew Chem Int Ed 46:5198–5201

    Article  CAS  Google Scholar 

  18. Shimazaki Y, Tani F, Fukui K, Naruta Y, Yamauchi O (2003) One-electron oxidized nickel (II)-(disalicylidene) diamine complex: temperature-dependent tautomerism between Ni(III)-phenolate and Ni(II)-phenoxyl radical states. J Am Chem Soc 125:10512–10513

    Article  CAS  Google Scholar 

  19. Rotthaus O, Jarjayes O, Perez Del Valle C, Philouze C, Thomas F (2007) A versatile electronic hole in one-electron oxidized NiIIbis-salicylidene phenylenediamine complexes. Chem Commun 43:4462–4464

    Article  Google Scholar 

  20. Bag B, Mondal N, Rosair G, Mitra S (2000) The first thermally-stable singly oxo-bridged dinuclear Ni(III) complex. Chem Commun:1729–1730

  21. Rotthaus O, Jarjayes O, Thomas F, Philouze C, Valle CPD, Saint-Aman E, Pierre JL (2006) Fine tuning of the oxidation locus, and electron transfer, in nickel complexes of pro-radical ligands. Chem Eur J 12:2293–2302

    Article  CAS  Google Scholar 

  22. Rotthaus O, Thomas F, Jarjayes O, Philouze C, Saint-Aman E, Pierre JL (2006) Valence tautomerism in octahedral and square-planar phenoxyl-nickel (II) complexes: are imino nitrogen atoms good friends? Chem Eur J 12:6953–6962

    Article  CAS  Google Scholar 

  23. Goldsby KA, Blaho JK, Hoferkamp LA (1989) Oxidation of nickel (II) bis (salicylaldimine) complexes: solvent control of the ultimate redox site. Polyhedron 8:113–115

    Article  CAS  Google Scholar 

  24. Dolphin D, Niem T, Felton RH, Fujita I (1975) Reversible intramolecular electron transfer in an oxidized nickel porphyrin. J Am Chem Soc 97:5288–5290

    Article  CAS  Google Scholar 

  25. Seth J, Palaniappan V, Bocian DF (1995) Oxidation of nickel (II) tetraphenylporphyrin revisited. Characterization of stable nickel (III) complexes at room temperature. Inorg Chem 34:2201–2206

    Article  CAS  Google Scholar 

  26. Rodyagina TY, Gaman'kov PV, Dmitrieva EA, Chepurnaya IA, Vasil'eva SV, Timonov AM (2005) Structuring redox polymers poly[M (schiff)] (M = Ni, Pd; Schiff = schiff bases) on a molecular level: methods and results of an investigation. Russ J Electrochem 41:1101–1110

    Article  CAS  Google Scholar 

  27. Robin MB, Day P (1968) Mixed-valence chemistry: a survey and classification. Adv Inorg Chem Radiochem 10:247–422

    Google Scholar 

  28. Tedim J, Patricio S, Fonseca J, Magalhaes AL, Moura C, Hillman AR, Freire C (2011) Modulating spectroelectrochemical properties of [Ni(salen)] polymeric films at molecular level. Synth Met 161:680–691

    Article  CAS  Google Scholar 

  29. Pfeiffer P, Breith E, Lübbe E, Tsumaki T (1933) Tricyclische orthokondensierte Nebenvalenzringe. Just Liebigs Ann der Chemie 503:84–130

    Article  CAS  Google Scholar 

  30. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  31. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  33. Dunning TH Jr, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Schaefer H III (ed) Methods of electronic structure theory. Springer, New York, pp 1–27

    Chapter  Google Scholar 

  34. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations—potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01

  36. Levin OV, Karushev MP, Timonov AM, Alekseeva EV, Zhang SH, Malev VV (2013) Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases. Electrochim Acta 109:153–161

    Article  CAS  Google Scholar 

  37. Malev VV, Levin OV, Timonov AM (2013) Quasi-equilibrium voltammetric curves resulting from the existence of two immobile charge carriers within electroactive polymer films. Electrochim Acta 108:313–320

    Article  CAS  Google Scholar 

  38. Krasikova SA, Besedina MA, Karushev MP, Dmitrieva EA, Timonov AM (2010) In situ electrochemical microbalance studies of polymerization and redox processes in polymeric complexes of transition metals with Schiff bases. Russ J Electrochem 46:218–226

    Article  CAS  Google Scholar 

  39. Tolstopyatova EG, Pogulaichenko NA, Eliseeva SN, Kondratiev VV (2009) Spectroelectrochemical study of poly-3,4-ethylenedioxythiophene films in the presence of different supporting electrolytes. Russ J Electrochem 45:252–262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Russian Foundation for Basic Research (grant # 13-03-00843-a). V.V.M. would like to acknowledge the funding from the Russian Foundation for Basic Research (grant # 12-03-00560-a) and St. Petersburg State University (grant # 12.38.77.2012). DFT calculations were performed using the facilities provided by the Computational Resource Center of St. Petersburg State University. The authors wish to thank Prof. Larry Daniels (Wake Forest University, USA) for very constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Levin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizov, V.V., Novozhilova, M.V., Alekseeva, E.V. et al. Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study. J Solid State Electrochem 19, 453–468 (2015). https://doi.org/10.1007/s10008-014-2619-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2619-4

Keywords

Navigation