Skip to main content
Log in

Photoelectrocatalytic degradation of 3-nitrophenol at surface of Ti/TiO2 electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The widely utilization of phenol and its derivatives such as 3-nitrophenol (3-NP) has led to the worldwide pollution in the environment. In this study, Ti/TiO2 photoelectrode was prepared with anodic oxidation of Ti foil electrode and then the photoelectrocatalytic (PEC) degradation of 3-NP was performed via this electrode, comparing with photocatalytic (PC), electrooxidation and direct photolysis by ultraviolet light. A significant photoelectrochemical synergetic effect in 3-NP degradation was observed on the Ti/TiO2 electrode and rate constant for the PEC process of Ti/TiO2 electrode was about three times as high as its PC degradation process. 3-NP concentration monitoring was carried out with differential pulse voltammetry. Results showed that PEC degradation has highest effect on concentration decreasing of 3-NP at solution and degraded it about 38 %, while other processes degradation efficiencies were about 4, 7, and 12 % for electrooxidation, direct photolysis and photocatalytic degradation, respectively. Finally, effects of solution pH and applied potential on degradation efficiency were studied and results showed that optimum pH for degradation is equal 4.00 and optimum potential is 1.2 V vs. Ag|AgCl|KCl (3M) reference electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Bard AJ (1982) J Phys Chem 86:172–177

    Article  CAS  Google Scholar 

  3. Gratzel M (1983) Energy resources through photochemistry and catalysis. Academic, New York

    Google Scholar 

  4. Kalyanasundaram K, Gratzel M, Pelizzetti E (1986) Coord Chem Rev 69:57–125

    Article  Google Scholar 

  5. Parmon VN, Zamareav KI (1989) In: Pelizzetti E, Serpone N (eds) Photocatalysis: fundamentals and applications. Wiley, New York

    Google Scholar 

  6. Pelizzetti E, Schiavello M (1991) Photochemical conversion and storage of solar energy. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  7. Gao ZQ, Yang SG, Ta N, Sun C (2007) J Hazard Mater 145:424–430

    Article  CAS  Google Scholar 

  8. Liu ZY, Zhang XT, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) J Phys Chem C 112:253–259

    Article  CAS  Google Scholar 

  9. Wang X, Zhao HM, Quan X, Zhao YZ, Chen S (2009) J Hazard Mater 166:547–552

    Article  CAS  Google Scholar 

  10. Liang HC, Li XZ (2009) J Hazard Mater 162:1415–1422

    Article  CAS  Google Scholar 

  11. Liu YB, Li JH, Zhou BX, Bai J, Zheng Q, Zhang JL, Cai WM (2009) Environ Chem Lett 7:363–368

    Article  CAS  Google Scholar 

  12. Zheng Q, Zhou BX, Bai J, Li LH, Jin ZJ, Zhang JL, Li JH, Liu YB, Cai WM, Zhu XY (2008) Adv Mater 20:1044–1049

    Article  CAS  Google Scholar 

  13. Qiao S, Sun DD, Tay JH, Easton C (2003) Water Sci Technol 47:211–217

    CAS  Google Scholar 

  14. Us EPA (1976) Water quality criteria. US EPA, Washington

    Google Scholar 

  15. Pumaa GL, Bonob A, Krishnaiahb D, Collin JG (2008) J Hazard Mater 157:209–219

    Article  Google Scholar 

  16. Gao FF, Wang Y, Shi D, Zhang J, Wang MK, Jing XY, Baker RH, Wang P, Zakeeruddin SM, Gratzel M (2008) J Am Chem Soc 130:10720–10728

    Article  CAS  Google Scholar 

  17. Carneiro PA, Osugi ME, Sene JJ, Anderson MA, Zanoni MB (2004) Electrochim Acta 49:3807–3820

    Article  CAS  Google Scholar 

  18. Zanoni MB, Sene JJ, Anderson MA (2003) J Photochem Photobio A Chem 157:55–63

    Article  CAS  Google Scholar 

  19. Li JQ, Zheng L, Li LP, Xian YZ, Jin LT (2007) J Hazard Mater 139:72–78

    Article  Google Scholar 

  20. Li JQ, Zheng L, Li LP, Xian YZ, Jin LT (2006) Electrochim Acta 51:4942–4949

    Article  CAS  Google Scholar 

  21. Adewuyi YG (2005) Environ Sci Technol 39:8557–8570

    Article  CAS  Google Scholar 

  22. Berberidou C, Poulios I, Xekoukoulotakis NP, Mantzavinos D (2007) Appl Catal B Environ 74:63–72

    Article  CAS  Google Scholar 

  23. Priya MH, Madras G (2006) Ind Eng Chem Res 45:913–921

    Article  CAS  Google Scholar 

  24. Kaur S, Singh V (2007) Ultrason Sonochem 14:531–537

    Article  CAS  Google Scholar 

  25. Pérez NJB, Herrera MFS (2007) Ultrason Sonochem 14:589–595

    Article  Google Scholar 

  26. Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Water Res 41:2236–2246

    Article  CAS  Google Scholar 

  27. Li G, Qu J, Zhang X, Liu H (2006) J Mole Catal A Chemical 259:238–244

    Article  CAS  Google Scholar 

  28. Liu Y, Gan X, Zhou B, Xiong B, Li J, Dong C, Bai J, Cai W (2009) J Hazard Mater 171:678–683

    Article  CAS  Google Scholar 

  29. Nohara K, Hidaka H, Pelizzetti E, Serpone N (1997) Photochem Photobiol A Chem 102:265–272

    Article  CAS  Google Scholar 

  30. Poulios I, Tsachpinis I (1999) J Chem Technol Biotechnol 74:349–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ojani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojani, R., Raoof, JB., Khanmohammadi, A. et al. Photoelectrocatalytic degradation of 3-nitrophenol at surface of Ti/TiO2 electrode. J Solid State Electrochem 17, 63–68 (2013). https://doi.org/10.1007/s10008-012-1853-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1853-x

Keywords

Navigation