Skip to main content
Log in

Potential of low-cost TiO2-PVC composite in photoelectrocatalytic degradation of reactive orange 16 under visible light

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In recent years, previously reported studies revealed a high efficiency of pollutant degradation by coupling photocatalysis and electrochemical processes (PECs) using titanium dioxide (TiO2) photoelectrode rather than using photocatalysis or electrocatalysis alone. However, some of the TiO2 photoelectrodes that have been reported were not cost-effective. This is due to the use of expensive chemicals and certain expensive equipment in the fabrication process, other than involving complicated preparation steps. Therefore, this study is aimed at investigating the PEC performance and stability of low-cost TiO2-polyvinyl chloride (TiO2-PVC) composite photoelectrode for Reactive Orange 16 (RO16) degradation. The materials characterisation using the ATR-FTIR, XRD and UV-Vis DRS proved that TiO2 and TiO2-PVC were successfully synthesised. The micrograph obtained for the surface characterisation using the FESEM showed that the smooth surface of freshly prepared photoelectrodes turned slightly rough with tiny pits formation after five continuous PEC processes. Nevertheless, the photoelectrode retained its original shape in good condition for further PEC processes. By PEC process, the fabricated photoelectrode showed 99.4% and 51.1% of colour and total organic carbon (TOC) removal, respectively, at optimised PEC parameters (1.0 mol L−1 NaCl concentration, 10 V applied voltage, 120 min degradation time and initial pH 2). Moreover, the fabricated photoelectrode demonstrated sufficient reusability potential (~ 96.3%) after five cycles of PEC processes. In summary, a low-cost and stable composite photoelectrode with high efficiency in RO16 degradation was successfully fabricated and could be potentially applied for other emerging pollutants degradation via the PEC degradation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this research article.

References

  • Abdulhameed AS, Mohammad A-T, Jawad AH (2019) Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. J Clean Prod 232:43–56

    CAS  Google Scholar 

  • Ali T, Hunge YM, Venkatraman A (2018) UV assisted photoelectrocatalytic degradation of reactive red 152 dye using spray deposited TiO2 thin films. J Mater Sci Mater 29:1209–1215

    CAS  Google Scholar 

  • Anis SF, Lalia BS, Lesimple A, Hashaikeh R, Hilal N (2022) Electrically conductive membranes for contemporaneous dye rejection and degradation. Chem Eng J 428:131184

    CAS  Google Scholar 

  • Bahari SA, Grigsby WJ, Krause A (2017) Flexural properties of PVC/ bamboo composites under static and dynamic-thermal conditions: effects of composition and water absorption. Int J Polym Sci 2017:1–8

    Google Scholar 

  • Balakrishnan A, Gopalram K, Appunni S (2021) Photocatalytic degradation of 2, 4-dicholorophenoxyacetic acid by TiO2 modified catalyst: kinetics and operating cost analysis. Environ Sci Pollut Res 28(25):33331–33343

    CAS  Google Scholar 

  • Bessegato GG, Cardoso JC, Zanoni MVB (2015) Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes. Catal Today 240:100–106

    CAS  Google Scholar 

  • Brüninghoff R, van Duijne AK, Braakhuis L, Saha P, Jeremiasse AW, Mei B, Mul G (2019) Comparative analysis of photocatalytic and electrochemical degradation of 4-ethylphenol in saline conditions. Environ Sci Technol 53:8725–8735

    Google Scholar 

  • Carbajo J, Bahamonde A, Faraldos M (2017) Photocatalyst performance in wastewater treatment applications: Towards the role of TiO2 properties. Mol Catal 434:167–174

    CAS  Google Scholar 

  • Chen Q, Liu H, Xin Y, Cheng X (2014) Coupling immobilized TiO2 nanobelts and Au nanoparticles for enhanced photocatalytic and photoelectrocatalytic activity and mechanism insights. Chem Eng J 241:145–154

    CAS  Google Scholar 

  • Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K, Huo S, Cheng P, Peng P, Zhang R, Wang L, Liu H, Liu Y, Ruang R (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J Clean Prod 268:121725

    CAS  Google Scholar 

  • Collivignarelli MC, Abbà A, Carnevale Miino M, Bertanza G, Sorlini S, Damiani S, Arab H, Bestetti M, Franz S (2021) Photoelectrocatalysis on TiO2 meshes: different applications in the integrated urban water management. Environ Sci Pollut Res 28(42):59452–59461

    CAS  Google Scholar 

  • De Moura DC, Quiroz MA, Da Silva DR, Salazar R, Martinez-Huitle CA (2016) Electrochemical degradation of Acid Blue 113 dye using TiO2-nanotubes decorated with PbO2 as anode. Environ Nanotechnol Monit Manage 5:13–20

    Google Scholar 

  • de Oliveira ME, Barroso BL, de Almeida J, Moraes MLL, Rodrigues CDA (2020) Photoelectrocatalytic degradation of 17α-ethinylestradiol and estrone under UV and visible light using nanotubular oxide arrays grown on Ti-0.5wt%W. Environ Res 191:110044

    Google Scholar 

  • Du L, Wu J, Hu C (2012) Electrochemical oxidation of Rhodamine B on RuO2–PdO–TiO2/Ti electrode. Electrochim Acta 68:69–73

    CAS  Google Scholar 

  • Fadillah G, Saleh TA, Wahyuningsih S (2019) Enhanced electrochemical degradation of 4-Nitrophenol molecules using novel Ti/TiO2-NiO electrodes. J Mol Liq 289:111108

    CAS  Google Scholar 

  • Fard BH, Khojasteh RR, Gharbani P (2018) Preparation and characterization of visible-light sensitive nano Ag/Ag3VO4/AgVO3 modified by graphene oxide for photodegradation of reactive orange 16 dye. J Inorg Organomet Polym Mater 28:1149–1157

    CAS  Google Scholar 

  • Gong J, Pu W, Yang C, Zhang J (2012) Tungsten and nitrogen co-doped TiO2 electrode sensitized with Fe–chlorophyllin for visible light photoelectrocatalysis. Chem Eng J 209:94–101

    CAS  Google Scholar 

  • Haddad M, Abid S, Hamdi M, Bouallagui H (2018) Reduction of adsorbed dyes content in the discharged sludge coming from an industrial textile wastewater treatment plant using aerobic activated sludge process. J Environ Manag 223:936–946

    CAS  Google Scholar 

  • Hakizimanaa JN, Gourich B, Chafi M, Stiriba Y, Vial C, Drogui P, Naja J (2017) Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches. Desalination 404:1–21

    Google Scholar 

  • Hasan M, Banerjee AN, Lee M (2015) Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@ PVC nanocomposite films. Bull Mater Sci 38(2):283–290

    CAS  Google Scholar 

  • Huang Z, Li Y, Chen W, Shi J, Zhang N, Wang X, Li Z, Gao L, Zhang Y (2017) Modified bentonite adsorption of organic pollutants of dye wastewater. Mater Chem Phys 202:266–276

    CAS  Google Scholar 

  • Jaafar NF, Jalil AA, Triwahyono S, Shamsuddin N (2015) New insights into self-modification of mesoporous titania nanoparticles for enhanced photoactivity: effect of microwave power density on formation of oxygen vacancies and Ti3+ defects. RSC Adv 5:90991

    CAS  Google Scholar 

  • Jawad AH, Abd Malek NN, Abdulhameed AS, Razuan R (2020) Synthesis of Magnetic Chitosan-Fly Ash/Fe3O4 Composite for Adsorption of Reactive Orange 16 Dye: Optimization by Box–Behnken Design. J Polym Environ 28:1068–1082

    CAS  Google Scholar 

  • Jia Y, Ye L, Kang X, You H, Wang S, Yao J (2016) Photoelectrocatalytic reduction of perchlorate in aqueous solutions over Ag doped TiO2 nanotube arrays. J Photochem Photobio A: Chem 328:225–232

    CAS  Google Scholar 

  • Jia M, Liu Q, Xiong W, Yang Z, Zhang C, Wang D, Xiang Y, Peng H, Tong J, Cao J, Xu H (2022) Ti3+ self-doped TiO2 nanotubes photoelectrode decorated with Ar-Fe2O3 derived from MIL-100(Fe): Enhanced photo-electrocatalytic performance for antibiotic degradation. Appl Catal B Environ 310:121344

    CAS  Google Scholar 

  • Jin C, Dai Y, Wei W, Ma X, Li M, Huang B (2017) Effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO2. Appl Surf Sci 426:639–646

    CAS  Google Scholar 

  • Karuppasamy P, Nisha NRN, Pugazhendhi A, Kandasamy S, Pitchaimuthu S (2021) An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. J Environ Chem Eng 9:105254

    CAS  Google Scholar 

  • Kaushal J, Mahajan P (2022) Kinetic evaluation for removal of an anionic diazo direct red 28 by using phytoremediation potential of Salvinia molesta Mitchell. Bull Environ ContamTox 108:437–442

    CAS  Google Scholar 

  • Kornaros M, Lyberatos G (2006) Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. J Hazard Mater 136:95–102

    CAS  Google Scholar 

  • Krishnan S, Shriwastav A (2021) Application of TiO2 nanoparticles sensitized with natural chlorophyll pigments as catalyst for visible light photocatalytic degradation of methylene blue. J Environ Chem Eng 9:104699

    CAS  Google Scholar 

  • Lau YY, Wong YS, Teng TT, Morad N, Rafatullah M, Ong SA (2015) Degradation of cationic and anionic dyes in coagulation–flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent. RSC Adv 5:34206

    CAS  Google Scholar 

  • León A, Reuquen P, Garín C, Segura R, Vargas P, Zapata P, Orihuela PA (2017) FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl Sci 7:49

    Google Scholar 

  • Li D, Jia J, Zhang Y, Wang N, Guo X, Yu X (2016) Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant. J Hazard Mater 315:1–10

    CAS  Google Scholar 

  • Li Q, Li T, Wang Q (2020a) Photoelectrocatalytic removal of bisphenol A using [Ru(bpy)2(tatp)]2+ modified TiO2 electrode. Int J Electrochem Sci 15:6759–6768

    CAS  Google Scholar 

  • Li R, Li T, Zhou Q (2020b) Impact of titanium dioxide (TiO2) modification on its application to pollution treatment—A review. Catalysts 10:804

    CAS  Google Scholar 

  • Liu D, Tian R, Wang J, Nie E, Piao X, Li X, Sun Z (2017) Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation. Chemosphere 185:574–581

    CAS  Google Scholar 

  • Liu Y, Tan Y, Cheng Z, Liu S, Ren Y, Chen X, Fan M, Sen Z (2022) Quantitative structure-activity relationship (QSAR) guides the development of dye removal by coagulation. J Hazard Mater 438:129448

    CAS  Google Scholar 

  • Luo J, Wang Y, Cao D, Xiao K, Guo T, Zhao X (2018) Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenol by TiO2/ Ru-IrO2 bifacial electrode. Chem Eng J 343:69–77

    CAS  Google Scholar 

  • Luo C, Yao W, Gao X (2022) Degradation of a Reactive Orange 16 in textile wastewater treatment using CuO/ZnO nanocomposite as photocatalyst. Int J Electrochem Sci 17:220732

    CAS  Google Scholar 

  • Ma L, Zhuo R, Liu H, Yu D, Jiang M, Zhang X, Yang Y (2014) Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochem Eng J 82:1–9

    CAS  Google Scholar 

  • Mahmoudi S, Fadaei S, Taheri E, Fatehizadeh A, Aminabhavi TM (2022) Direct red 89 dye degradation by advanced oxidation process using sulfite and zero valent under ultraviolet irradiation: Toxicity assessment and adaptive neuro-fuzzy inference systems modelling. Environ Res 211:113059

    CAS  Google Scholar 

  • Mais L, Palmas S, Mascia M, Vacca A (2021) Effect of potential and chlorides on photoelectrochemical removal of diethyl phthalate from water. Catalysts 11:882

    CAS  Google Scholar 

  • Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH (2017) Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. J Taiwan Inst Chem Eng 71:47–54

    CAS  Google Scholar 

  • Migliorini FL, Braga NA, Alves SA, Lanza MRV, Baldan MR, Ferreira NG (2011) Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes. J Hazard Mater 192:1683–1689

    CAS  Google Scholar 

  • Mijin DZ, Tomic VD, Grgur BN (2015) Electrochemical decolorization of the Reactive Orange 16 dye using a dimensionally stable Ti/PtOx anode. J Serb Chem Soc 80(7):903–915

    CAS  Google Scholar 

  • Mishra S, Maiti A (2019) Process optimization for effective bio-decolourization of reactive orange 16 using chemometric methods. J Environ Sci Health, Part A 54(3):179–192

    CAS  Google Scholar 

  • Mitrović J, Radović M, Bojić D, Anđelković T, Purenović M, Bojić A (2012) Decolorization of the textile azo dye Reactive Orange 16 by the UV/H2O2 process. J Serb Chem Soc 77(4):465–481

    Google Scholar 

  • Mohd Halim NH, Adnan R, Lahuri AH, Jaafar NF, Nordin N (2022) Exploring the potential of highly efficient graphite/chitosan–PVC composite electrodes in the electrochemical degradation of Reactive Red 4. J Chem Technol Biotechnol 97:147–159

    CAS  Google Scholar 

  • Mugundan S, Rajamannan B, Viruthagiri G, Shanmugam N, Gobi R, Praveen P (2015) Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl Nanosci 5:449–456

    CAS  Google Scholar 

  • Nada AA, El Rouby WMA, Bekheet MF, Antuch M, Weber M, Miele P, Viter R, Roualdes S, Millet P, Bechelany M (2020) Highly textured boron/nitrogen co-doped TiO2 with honeycomb structure showing enhanced visible-light photoelectrocatalytic activity. Appl Surf Sci 505:144419

    CAS  Google Scholar 

  • Nordin N, Pisal MF, Razman NH, Jaafar NF (2019) Electrochemical degradation of reactive blue 21 and synthetic textile effluent by using CO47.5/C47.5-PVC5 composite electrode. Acta Chim Slov 66:284–293

    CAS  Google Scholar 

  • Pinedo-Hernández J, Marrugo-Negrete J, Díez S (2020) Removal of Cypermethrin and chemical oxygen demand from livestock wastewater by electrocoagulation. Chem Eng Technol 43:211–217

    Google Scholar 

  • Qiu L, Wang G, Liu Z, Zhao Q, Tian X, Li H, Gao S (2018) Preparation of 3D TiO2 nanotube arrays photoelectrode on Ti mesh for photoelectric conversion and photoelectrocatalytic removal of pollutant. Sep Purif Technol 207:206–212

    CAS  Google Scholar 

  • Rajput RB, Shaikh R, Sawant J, Kale RB (2022) Recent developments in ZnO-based heterostructures as photoelectrocatalysts for wastewater treatment: a review. Environ Adv 9:100264

    CAS  Google Scholar 

  • Saeed M, Muneer M, Ul Haq A, Akram N (2021) Photocatalysis: an effective tool for photodegradation of dyes—a review. Environ Sci Pollut Res 29:293-311

  • Sheydaei M, Karimi M, Vatanpour V (2019) Continuous flow photoelectrocatalysis/reverse osmosis hybrid reactor for degradation of a pesticide using nano N-TiO2/Ag/Ti electrode under visible light. J Photochem Photobio A: Chem 384:112068

    CAS  Google Scholar 

  • Simsek EB (2017) Solvothermal synthesized boron doped TiO2 catalysts: photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Appl Catal B Environ 200:309–322

    Google Scholar 

  • Šlosarčíková P, Plachá D, Malachová K, Rybková Z, Novotný C (2020) Biodegradation of Reactive Orange 16 azo dye by simultaneous action of Pleurotus ostreatus and the yeast Candida zeylanoides. Folia Microbiol 65(4):629–638

    Google Scholar 

  • Solehudin M, Sirimahachai U, Ali GAM, Chong KF, Wongnawa S (2020) One-pot synthesis of isotype heterojunction g-C3N4-MU photocatalyst for effective tetracycline hydrochloride antibiotic and reactive orange 16 dye removal. Adv Powder Technol 31:1891–1902

    CAS  Google Scholar 

  • Souza FL, Aquino JM, Irikura K, Miwa DW, Rodrigo MA, Motheo AJ (2014) Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/β-PbO2 anode. Chemosphere 109:187–194

    CAS  Google Scholar 

  • Su YF, Wang GB, Kuo DTF, Chang ML, Shih YH (2016) Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2/Ti photoanode. Appl Catal B Environ 186:184–192

    CAS  Google Scholar 

  • Su M, Li H, He X, Xu Z (2022) Significant enhancement of pesticide and organic dyes degradation by ion-exchange within a metal–organic framework. Polyhedron 215:115651

    CAS  Google Scholar 

  • Sun D, Hong X, Cui Z, Du Y, Hui KS, Zhu E, Wu K, Hui K (2020) Treatment of landfill leachate using magnetically attracted zero-valent iron powder electrode in an electric field. J Hazard Mater 388:121768

    CAS  Google Scholar 

  • Taha TA, Ismail Z, Elhawary MM (2018) Structural, optical and thermal characterization of PVC/SnO2. Appl Phys A Mater Sci Process 125:37

    Google Scholar 

  • Wang Q, Zhua N, Liu E, Zhang C, Crittenden JC, Zhang Y, Cong Y (2017) Fabrication of visible-light active Fe2O3-GQDs/NF-TiO2 composite film with highly enhanced photoelectrocatalytic performance. Appl Catal B Environ 205:347–356

    CAS  Google Scholar 

  • Wei X, Wang Y, Feng Y, Xie X, Li X, Yang S (2019) Diferent adsorption-degradation behavior of methylene blue and Congo red in nanoceria/H2O2 system under alkaline conditions. Sci Rep 9:4964

    Google Scholar 

  • Wen X, Zhang H (2016) Photoelectrochemical properties of CuSGeO2-TiO2 composite coating electrode. PLoS One 11(4):0152862

    Google Scholar 

  • Wu X, Huang Z, Liu Y, Fang M (2012) Investigation on the photoelectrocatalytic activity of well-aligned TiO2 nanotube arrays. Int J Photoenergy 2012:832516

    Google Scholar 

  • Wu YH, Wu T, Lin YW (2019) Photoelectrocatalytic degradation of methylene blue on cadmium sulfide–sensitized titanium dioxide film. Mater Res Bull 118:110500

    CAS  Google Scholar 

  • Wu J, Zhu K, Guo YF, Xu H, Yan W (2020) Temperature controlled fabrication of TiO2 nanotube-based arrays electrode and its application for photoelectrocatalytic degradation of RhB. Int J Electrochem Sci 15:1091–1107

    CAS  Google Scholar 

  • Yang L, Li Z, Jiang H, Jiang W, Su R, Luo S, Luo Y (2016) Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO2/graphene/Cu2O. Appl Catal B Environ 183:75–85

    CAS  Google Scholar 

  • Yang Y, Kao LC, Liu Y, Sun K, Yu H, Guo J, Liou SYH, Hoffmann MR (2018) Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment. ACS Catal 8:4278–4287

    CAS  Google Scholar 

  • Yu J, Zou J, Xu P, He Q (2020) Three-dimensional photoelectrocatalytic degradation of the opaque dye acid fuchsin by Pr and Co co-doped TiO2 particle electrodes. J Clean Prod 251:119744

    CAS  Google Scholar 

  • Zakaria Z, Othman MR, Hasan SZ, Wan Ahmad WY (2019) Electrochemical degradation of reactive orange 16 by using charcoal-based metallic composite electrodes. Sains Malaysiana 48(4):791–801

    CAS  Google Scholar 

  • Zanoni MVB, Sene JJ, Anderson MA (2003) Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrode. J Photochem Photobiol A: Chem 157:55–63

    CAS  Google Scholar 

Download references

Funding

This work was supported by Ministry of Higher Education Malaysia through Fundamental Research Grant Scheme (FRGS) (FRGS/1/2020/ STG04/USM/02/4) and Universiti Sains Malaysia through Short-Term Grant Matching (304/PKIMIA/6315705)

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the study conception and design. The literature preparation, data collection and analysis were performed by Norazzizi Nordin, Nur Farhana Jaafar, Nurul Yasmin Mohamed Haris, Nadhra Hidayah Mohd Halim, Azizul Hakim Lahuri and Wan Zurina Samad. The first draft of the manuscript was written by Norazzizi Nordin and Nur Farhana Jaafar, and all authors commented on previous versions of the manuscript. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Norazzizi Nordin.

Ethics declarations

Ethical approval

There are no human subjects in this article and ethical approval is not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaafar, N.F., Nordin, N., Mohamed Haris, N.Y. et al. Potential of low-cost TiO2-PVC composite in photoelectrocatalytic degradation of reactive orange 16 under visible light. Environ Sci Pollut Res 30, 47144–47157 (2023). https://doi.org/10.1007/s11356-023-25623-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-25623-3

Keywords

Navigation