Skip to main content
Log in

Oxygen evolution: the mechanism of formation of porous anodic alumina

  • Orignal Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Aluminium anodization behavior in ammonium sebacate solution (w = 4%) in ethylene glycol, and in several H3PO4-containing electrolytes, has been investigated. A new mechanism is proposed for the formation of porous anodic films. The model emphasizes the close relationship between pore generation and oxygen evolution. PO4 3− ions incorporated in the anodic films behave as the primary source of avalanche electrons. It is the avalanche electronic current through the barrier film that causes oxygen evolution during anodization. When growth of anodic oxide and oxygen evolution occur simultaneously at the aluminium anode, cavities or pores are formed in the resulting films. Accordingly, the mechanisms of growth of barrier and porous films are not very different in nature. These findings are a decisive new step towards full understanding of the nature of anodic alumina films.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Masuda H, Fukuda K (1995) Science 268:1466

    Article  CAS  Google Scholar 

  2. Yanagishita T, Sasaki M, Nishio K, Masuda H (2004) Adv Mater 16:429

    Article  CAS  Google Scholar 

  3. Whitney TM, Searson PC, Jiang JS, Chien CL (1993) Science 261:1316

    Article  CAS  Google Scholar 

  4. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon J-M (2006) Nat Mater 5:567

    Article  CAS  Google Scholar 

  5. Chu SZ, Wada K, Inoue S, Todoroki S (2002) Chem Mater 14:266

    Article  CAS  Google Scholar 

  6. Matsumoto F, Nishio K, Masuda H (2004) Adv Mater 16:2105

    Article  CAS  Google Scholar 

  7. Keller F, Hunter MS, Robinson DL (1953) J Electrochem Soc 100:411

    Article  CAS  Google Scholar 

  8. Spooner RC, Forsyth WJ (1963) Nature 200:1002

    Article  Google Scholar 

  9. Thompson GE, Wood GC (1981) Nature 290:230

    Article  CAS  Google Scholar 

  10. Parkhutik VP, Shershulsky VI (1992) J Phys D Appl Phys 25:1258

    Article  CAS  Google Scholar 

  11. Jessensky O, Muller F, Gösele U (1998) J Electrochem Soc 145:3735

    Article  CAS  Google Scholar 

  12. Thompson GE (1997) Thin Solid Films 297:192

    Article  CAS  Google Scholar 

  13. Lee W, Ji R, Gösele U, Nielsch K (2006) Nat Mater 5:741

    Article  CAS  Google Scholar 

  14. Li F, Zhang L, Metzger RM (1998) Chem Mater 10:2470

    Article  CAS  Google Scholar 

  15. Masuda H, Hasegwa F, Ono S (1997) J Electrochem Soc 144:L127

    Article  CAS  Google Scholar 

  16. Macdonald DD (1993) J Electrochem Soc 140:L27

    Article  CAS  Google Scholar 

  17. Crevecoeur C, de Wit HJ (1987) J Electrochem Soc 134:808

    Article  CAS  Google Scholar 

  18. Zhuravlyova E, Iglesias-Rubianes L, Pakes A, Skeldon P, Thompson GE, Zhou X, Quance T, Graham MJ, Habazaki H, Shimizu K (2002) Corros Sci 44:2153

    Article  CAS  Google Scholar 

  19. Li Y, Shimada H, Sakairi M, Shigyo K, Takahashi H, Seo M (1997) J Electrochem Soc 144:866

    Article  CAS  Google Scholar 

  20. Zhu XF, Li DD, Song Y, Xiao YH (2005) Mater Lett 59:3160

    Article  CAS  Google Scholar 

  21. Liu Y, Alwitt RS, Shimizu K (2000) J Electrochem Soc 147:1382

    Article  CAS  Google Scholar 

  22. Zhu XF, Liu L, Song Y, Jia HB, Yu HD, Xiao XM, Yang XL (2008) Monatsh Chem 139:999

    Article  CAS  Google Scholar 

  23. Albella JM, Montero I, Martinez-Duart JM (1987) Electrochim Acta 32:255

    Article  CAS  Google Scholar 

  24. Patermarakis G, Masavetas K (2006) J Electroanal Chem 588:179

    Article  CAS  Google Scholar 

  25. Song Y, Zhu XF, Wang X, Che J, Du Y (2001) J Appl Electrochem 31:1273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufei Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Zhu, X., Jia, H. et al. Oxygen evolution: the mechanism of formation of porous anodic alumina. Monatsh Chem 140, 595–600 (2009). https://doi.org/10.1007/s00706-008-0098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-008-0098-y

Keywords

Navigation