Skip to main content
Log in

Effect of anodic oxygen evolution on cell morphology of sulfuric acid anodic alumina films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The purpose of this work was to study and analyze the effect of electrolyte temperature and anodization voltage on cell morphology of thin films of sulfuric acid anodic alumina formed on substrates of different nature, such as SiO2/Si, glass-ceramic, glass substrates, and polished aluminum. The data obtained demonstrated that the thermal conductivity of the substrate in the voltage range from 12 to 14 V affected a pore diameter (dpore) in anodic films. Depending on the substrate type, dpore increased in the following order: glass > glass-ceramic > SiO2/Si > aluminum. It was found that the anodizing voltage (Ua) of 16 V was a turning point for anodic films obtained in sulfuric acid after which the slope of the lines for both dpore and Dinter (interpore distance) vs. Ua changed. This behavior might be explained by the occurrence of the overpotential enough for the beginning of the oxygen evolution reaction. We assumed that the oxygen evolution on aluminum oxide surface at the pore bottom at Ua > 16 V results in an increase in acid concentration in the solution and, consequently, in rise in acidic nature of the electrolyte and increase in the dissolution rate of the oxide layer of pore walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jessensky O, Müller F, Gösele U (1998) Self-organized formation of hexagonal pore arrays in anodic alumina. Appl Phys Lett 72(10):1173–1175

    Article  CAS  Google Scholar 

  2. Houser JE, Hebert KR (2009) The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat Mater 8(5):415–420

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Vergara SJ, Skeldon P, Thompson GE, Habazaki H (2006) A flow model of porous anodic film growth in aluminium. Electrochim Acta 52(2):681–687

    Article  CAS  Google Scholar 

  4. Garcia-Vergara SJ, Skeldon P, Thompson GE, Habazaki H (2007) Stress generated porosity in anodic alumina formed in sulphuric acid electrolyte. Corros Sci 49(10):3772–3782

    Article  CAS  Google Scholar 

  5. Hebert KR, Houser JE (2009) A model for coupled electrical migration and stress-driven transport in anodic oxide films. J Electrochem Soc 156(8):C275–C281

    Article  CAS  Google Scholar 

  6. Knörnschild G, Poznyak AA, Karoza AG, Mozalev (2015) A effect of the anodization conditions on the growth and volume expansion of porous alumina films in malonic acid electrolyte. Surf Coat Tech 275:17–25

    Article  Google Scholar 

  7. Liao J, Ling Z, Li Y, Hu X (2016) The role of stress in the self-organized growth of porous anodic alumina. ACS Appl Mater Inter 8(12):8017–8023

    Article  CAS  Google Scholar 

  8. Zhou F, Mohamed Al-Zenati AK, Baron-Wiecheć A, Curioni M, Garcia-Vergara SJ, Habazaki H, Skeldon P, Thompson GE (2011) Volume expansion factor and growth efficiency of anodic alumina formed in sulphuric acid. J Electrochem Soc 158(6):C202–C214

    Article  CAS  Google Scholar 

  9. Vrublevsky I, Parkoun V, Sokol V, Schreckenbach J, Marx G (2004) The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime. Appl Surf Sci 222(1-4):215–225

    Article  CAS  Google Scholar 

  10. Vrublevsky I, Parkoun V, Schreckenbach J, Marx G (2003) Effect of the current density on the volume expansion of he deposited thin films of aluminum during porous oxide formation. Appl Surf Sci 220(1-4):51–59

    Article  CAS  Google Scholar 

  11. Vrublevsky I, Parkoun V, Schreckenbach J, Marx G (2004) Study of porous oxide film growth on aluminum in oxalic acid using a re-anodizing technique. Appl Surf Sci 227(1-4):282–292

    Article  CAS  Google Scholar 

  12. Li AP, Müller F, Birner A, Nielsch K, Gösele U (1998) Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J Appl Phys 84(11):6023–6026

    Article  CAS  Google Scholar 

  13. Arurault L (2008) Pilling–Bedworth ratio of thick anodic aluminium porous films prepared at high voltages in H2SO4 based electrolyte. Trans Inst Met Finish 86(1):51–54

    Article  CAS  Google Scholar 

  14. Skeldon P, Thompson GE, Garcia-Vergara S, Iglesias-Rubianes L, Blanco-Pinzon CE (2006) A tracer study of porous anodic alumina. Electrochem Solid-State Let 9(11):B47–B51

    Article  CAS  Google Scholar 

  15. Vanpaemel J, Abd-Elnaiem A, Gendt SDE, Vereecken PM (2015) The formation mechanism of 3D porous anodized aluminum oxide templates from an aluminum film with copper impurities. J Phys Chem C 119(4):2105–2112

    Article  CAS  Google Scholar 

  16. Molchan IS, Molchan TV, Gaponenko NV, Skeldon P, Thompson GE (2010) Impurity-driven defect generation in porous anodic alumina. Electrochem Commun 12(5):693–696

    Article  CAS  Google Scholar 

  17. Skeldon P, Thompson GE, Wood GC, Zhou X, Habazaki H, Shimizu K (1997) Evidence of oxygen bubbles formed within anodic films on aluminium-copper alloys. Philos Mag A 76(4):729–741

    Article  CAS  Google Scholar 

  18. Lee W, Park SJ (2014) Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem Rev 114(15):7487–7556

    Article  CAS  PubMed  Google Scholar 

  19. Ono S, Masuko N (2003) Evaluation of pore diameter of anodic porous films formed on aluminum. Surf Coat Tech 169-170:139–142

    Article  CAS  Google Scholar 

  20. Stępniowski WJ, Norek M, Michalska-Domańska M, Bojar Z (2013) Ultra-small nanopores obtained by self-organized anodization of aluminum in oxalic acid at low voltages. Mater Lett 111:20–23

    Article  Google Scholar 

  21. Sulka GD, Stępniowski WJ (2009) Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim Acta 54(14):3683–3691

    Article  CAS  Google Scholar 

  22. Chernyakova K, Vrublevsky I, Klimas V, Jagminas A (2018) Effect of Joule heating on formation of porous structure of thin oxalic acid anodic alumina films. J Electrochem Soc 165(7):E289–E293

    Article  CAS  Google Scholar 

  23. Li D, Zhao L, Jiang C, Lu JG (2010) Formation of anodic aluminum oxide with serrated nanochannels. Nano Lett 10(8):2766–2771

    Article  CAS  PubMed  Google Scholar 

  24. Torrescano-Alvarez JM, Curioni M, Skeldon P (2017) Gravimetric measurement of oxygen evolution during anodizing of aluminum alloys. J Electrochem Soc 164(13):C728–C734

    Article  CAS  Google Scholar 

  25. Yang ZB, Hu JC, Li KQ, Zhang SY, Fan QH, Liu SA (2017) Advances of the research evolution on aluminum electrochemical anodic oxidation technology. IOP Conf Ser: Mater Sci Eng 283:012003

    Article  Google Scholar 

  26. Torrescano-Alvarez JM, Curioni M, Skeldon P (2018) Effects of oxygen evolution on the voltage and film morphology during galvanostatic anodizing of AA 2024-T3 aluminium alloy in sulphuric acid at −2 and 24 °C. Electrochim Acta 275:172–181

    Article  CAS  Google Scholar 

  27. Torrescano-Alvarez JM, Curioni M, Zhou X, Skeldon P (2018) Effect of anodizing conditions on the cell morphology of anodic films on AA2024-T3 alloy. Surf Interface Anal 51(9):1–9

    Google Scholar 

  28. Sunseri C, Spadaro C, Piazza S, Volpe M, Quarto FDI (2006) Porosity of anodic alumina membranes from electrochemical measurements. J Solid State Electrochem 10(6):416–421

    Article  CAS  Google Scholar 

  29. Garcia-Vergara SJ, Clere DL, Hashimoto T, Habazaki H, Skeldon P, Thompson GE (2009) Optimized observation of tungsten tracers for investigation of formation of porous anodic alumina. Electrochim Acta 54(26):6403–6411

    Article  CAS  Google Scholar 

  30. Garcia-Vergara SJ, Skeldon P, Thompson GE, Habazaki H (2007) Tracer studies of anodic films formed on aluminium in malonic and oxalic acids. Appl Surf Sci 254(5):1534–1542

    Article  CAS  Google Scholar 

  31. Chowdhury P, Thomas AN, Sharma M, Barshilia HC (2014) An approach for in situ measurement of anode temperature during the growth of self-ordered nanoporous anodic alumina thin films: influence of Joule heating on pore microstructure. Electrochim Acta 115:657–664

    Article  CAS  Google Scholar 

  32. Aerts T, Graeve ID, Terryn H (2009) Control of the electrode temperature for electrochemical studies: a new approach illustrated on porous anodizing of aluminium. Electrochem Commun 11(12):2292–2295

    Article  CAS  Google Scholar 

  33. Aerts T, Jorcin JB, Graeve ID, Terryn H (2010) Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium. Electrochim Acta 55(12):3957–3965

    Article  CAS  Google Scholar 

  34. Graeve ID, Terryn H, Thompson GE (2002) Influence of heat transfer on anodic oxidation of aluminium. J Appl Electrochem 32(1):73–83

    Article  Google Scholar 

  35. Schneider M, Lammel C, Heuber C, Michaelis A (2011) In situ temperature measurement on the metal/oxide/electrolyte interface during the anodizing of aluminium. Mater Corros 64:60–68

    Article  Google Scholar 

  36. Çapraz ÖÖ, Shrotriya P, Skeldon P, Thompson GE, Hebert KR (2015) Factors controlling stress generation during the initial growth of porous anodic aluminum oxide. Electrochim Acta 159:16–22

    Article  Google Scholar 

  37. Kondo M, Masaoka S (2016) Water oxidation catalysts constructed by biorelevant first-row metal complexes. Chem Lett 45(11):1220–1231

    Article  CAS  Google Scholar 

  38. Deng Y, Handoko AD, Du Y, Xi S, Yeo BS (2016) In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of Cu III oxides as catalytically active species. ACS Catal 6(4):2473–2481

    Article  CAS  Google Scholar 

  39. Vrublevsky I, Chernyakova K, Bund A, Ispas A, Schmidt U (2012) Effect of anodizing voltage on the sorption of water molecules on porous alumina. Appl Surf Sci 258(14):5394–5398

    Article  CAS  Google Scholar 

  40. Lambert J, Guthmann C, Ortega C, Saint-Jean M (2002) Permanent polarization and charge injection in thin anodic alumina layers studied by electrostatic force microscopy. J Appl Phys 91(11):9161–9169

    Article  CAS  Google Scholar 

  41. Schwirn K, Lee W, Hillebrand R, Steinhart M, Nielsch K, Gösele U (2008) Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano 2(2):302–310

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Vrublevsky.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyakova, K., Vrublevsky, I., Jagminas, A. et al. Effect of anodic oxygen evolution on cell morphology of sulfuric acid anodic alumina films. J Solid State Electrochem 25, 1453–1460 (2021). https://doi.org/10.1007/s10008-021-04925-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04925-x

Keywords

Navigation