Skip to main content
Log in

Improved hurricane forecasting from a variational bogus and ozone data assimilation (BODA) scheme: case study

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

This study develops a proper way to incorporate Atmospheric Infrared Sounder (AIRS) ozone data into the bogus data assimilation (BDA) initialization scheme for improving hurricane prediction. First, the observation operator at some model levels with the highest correlation coefficients is established to assimilate AIRS ozone data based on the correlation between total column ozone and potential vorticity (PV) ranging from 400 to 50 hPa level. Second, AIRS ozone data act as an augmentation to a BDA procedure using a four-dimensional variational (4D-Var) data assimilation system. Case studies of several hurricanes are performed to demonstrate the effectiveness of the bogus and ozone data assimilation (BODA) scheme. The statistical result indicates that assimilating AIRS ozone data at 4, 5, or 6 model levels can produce a significant improvement in hurricane track and intensity prediction, with reasonable computation time for the hurricane initialization. Moreover, a detailed analysis of how BODA scheme affects hurricane prediction is conducted for Hurricane Earl (2010). It is found that the new scheme developed in this study generates significant adjustments in the initial conditions (ICs) from the lower levels to the upper levels, compared with the BDA scheme. With the BODA scheme, hurricane development is found to be much more sensitive to the number of ozone data assimilation levels. In particular, the experiment with the assimilation of AIRS ozone data at proper number of model levels shows great capabilities in reproducing the intensity and intensity changes of Hurricane Earl, as well as improve the track prediction. These results suggest that AIRS ozone data convey valuable meteorological information in the upper troposphere, which can be assimilated into a numerical model to improve hurricane initialization when the low-level bogus data are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Allen DR, Hoppel KW, Nedoluha GE et al (2013) Limitations of wind extraction from 4D-Var assimilation of ozone. Atmos Chem Phys 13:3501–3515

    Article  Google Scholar 

  • Amerault C, Zou X (2003) Preliminary steps in assimilating SSM/I brightness temperatures in a hurricane prediction scheme. J Atmos Oceanic Technol 20:1154–1169

    Article  Google Scholar 

  • Aumann HH, Chahine MT, Gautier C et al (2003) AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sens 41:253–264

    Article  Google Scholar 

  • Balis D, Isaksen ISA, Zerefos C et al (2011) Observed and modelled record ozone decline over the Arctic during winter/spring 2011. Geophys Res Lett 38:L23801. doi:10.1029/2011GL049259

    Article  Google Scholar 

  • Bian J, Gettelman A, Chen H et al (2007) Validation of satellite ozone profile retrievals using Beijing ozonesonde data. J Geophys Res 112:D06305. doi:10.1029/2006JD007502

    Google Scholar 

  • Bosart LF (2003) Tropopause folding, upper-level frontogenesis, and beyond. Meteor Monogr 31:13–47

    Article  Google Scholar 

  • Carsey TP, Willoughby HE (2005) Ozone measurements from eyewall transects of two Atlantic tropical cyclones. Mon Wea Rev 133:166–174

    Article  Google Scholar 

  • Danielsen EF (1968) Stratospheric-tropospheric exchange based on radio-activity, ozone, and potential vorticity. J Atmos Sci 25:502–518

    Article  Google Scholar 

  • Davis C, Low NS, Shapiro MA et al (1999) Direct retrieval of wind from Total Ozone Mapping Spectrometer (TOMS) data: Examples from FASTEX. Quart J Roy Meteor Soc 125:3375–3391

    Google Scholar 

  • Dethof A, Holm EV (2004) Ozone assimilation in the ERA-40 reanalysis project. Quart J Roy Meteor Soc 130:2851–2872

    Article  Google Scholar 

  • Durnford D, Gyakum J, Atallah E (2009) The conversion of total column ozone data to numerical weather prediction model initializing fields, with simulations of the 24–25 January 2000 East Coast snowstorm. Mon Wea Rev 137:161–188

    Article  Google Scholar 

  • El Serafy GY, Kelder HM (2003) Near-real-time approach to assimilation of satellite-retrieved 3D ozone fields in a global model using a simplified Kalman filter. Quart J Roy Meteor Soc 129:3099–3120

    Article  Google Scholar 

  • Eskes HJ, Piters AJM, Levelt PF et al (1999) Variational assimilation of GOME total-column ozone satellite data in a 2D latitude-longitude tracer-transport model. J Atmos Sci 56:3560–3572

    Article  Google Scholar 

  • Eskes HJ, Van Velthoven PFJ, Kelder HM (2002) Global ozone forecasting based on ERS-2 GOME observations. Atmos Chem Phys 2:271–278

    Article  Google Scholar 

  • Eskes HJ, Van Velthoven PFJ, Valks PJM et al (2003) Assimilation of GOME total-ozone satellite observations in a three-dimensional tracer-transport model. Quart J Roy Meteor Soc 129:1663–1681

    Article  Google Scholar 

  • Feng L, Brugge R, Hólm EV et al (2008) Four-dimensional variational assimilation of ozone profiles from the Microwave Limb Sounder on the Aura satellite. J Geophys Res 113:D15S07. doi:10.1029/2007JD009121

  • Fujita T (1952) Pressure distribution within a typhoon. Geophys Mag 23:437–451

    Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398 + STR, National Center for Atmospheric Research, Boulder, CO, pp 138

  • Hao N, Koukouli ME, Inness A et al (2014) GOME-2 total ozone columns from MetOp-A/MetOp-B and assimilation in the MACC system. Atmos Meas Tech 7:2937–2951

    Article  Google Scholar 

  • Jang KI, Zou X, De Pondeca M et al (2003) Incorporating TOMS ozone measurements into the prediction of the Washington, DC, winter storm during 24–25 January 2000. J Appl Meteor 42:797–812

    Article  Google Scholar 

  • Kiesewetter G, Sinnhuber BM, Vountas M et al (2010) A long-term stratospheric ozone data set from assimilation of satellite observations: High-latitude ozone anomalies. J Geophys Res 115:D10307. doi:10.1029/2009JD013362

    Article  Google Scholar 

  • Levelt PF, Allaart MAF, Kelder HM (1996) On the assimilation of total-ozone satellite data. Ann Geophysicae 14:1111–1118

    Article  Google Scholar 

  • Liu Y, Zou X (2015) Impact of 4DVAR assimilation of AIRS total column ozone observations on the simulation of Hurricane Earl. J Meteor Res 29:257–271

    Article  Google Scholar 

  • Marshall JL, Uccellini L, Einaudi F et al (2007) The joint center for satellite data assimilation. Bull Amer Meteor Soc 88:329–340

    Article  Google Scholar 

  • Massart S, Clerbaux C, Cariolle D et al (2009) First steps towards the assimilation of IASI ozone data into the MOCAGE-PALM system. Atmos Chem Phys 9:5073–5091

    Article  Google Scholar 

  • Migliorini S, Brugge R, O’Neill A et al (2008) Evaluation of ozone total column measurements by the Ozone Monitoring Instrument using a data assimilation system. J Geophys Res 113:D15S21. doi:10.1029/2007JD008779

  • Migliorini S, Dragani R, Kaiser-Weiss AK et al (2009) The GlobMODEL demonstrator: assimilation of new satellite products in an operational meteorological center. IEEE J Sel Topics Appl Earth Observ 2:213–224

    Article  Google Scholar 

  • Monahan KP, Pan LL, McDonald AJ et al (2007) Validation of AIRS v4 ozone profiles in the UTLS using ozonesondes from Lauder, NZ and Boulder, USA. J Geophys Res 112:D17304. doi:10.1029/2006JD008181

    Article  Google Scholar 

  • Nakamura T, Akiyoshi H, Deushi M et al (2013) A multimodel comparison of stratospheric ozone data assimilation based on an ensemble Kalman filter approach. J Geophys Res 118:3848–3868

    Article  Google Scholar 

  • Normand C (1953) Atmospheric ozone and the upper-air conditions. Quart J Roy Meteor Soc 79:39–50

    Article  Google Scholar 

  • Ohring G, Muench HS (1960) Relationships between ozone and meteorological parameters in the lower stratosphere. J Atmos Sci 17:195–206

    Google Scholar 

  • Pan LL, Bowman KP, Shapiro M et al (2007) Chemical behavior of the tropopause observed during the stratosphere-troposphere analyses of regional transport experiment. J Geophys Res 112:D18110. doi:10.1029/2007JD008645

    Article  Google Scholar 

  • Park K, Zou X (2004) Toward developing an objective 4DVAR BDA scheme for hurricane initialization based on TPC observed parameters. Mon Wea Rev 132:2054–2069

    Article  Google Scholar 

  • Penn S (1965) Ozone and temperature structure in a hurricane. J Appl Meteor 4:212–216

    Article  Google Scholar 

  • Pierce RB, Schaack T, Al-Saadi JA et al (2007) Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment-North America. J Geophys Res 112:D12S21. doi:10.1029/2006JD007722

  • Pittman JV, Pan LL, Wei JC et al (2009) Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements. J Geophys Res 114:D24109. doi:10.1029/2009JD012493

    Article  Google Scholar 

  • Pu Z-X, Tao W-K, Braun S et al (2002) The impact of TRMM data on mesoscale numerical simulation of Supertyphoon Paka. Mon Wea Rev 130:2448–2458

    Article  Google Scholar 

  • Remsberg E, Natarajan M, Fairlie TD et al (2013) On the inclusion of Limb Infrared Monitor of the Stratosphere version 6 ozone in a data assimilation system. J Geophys Res 118:7982–8000

    Google Scholar 

  • Riishøjgaard LP (1996) On four-dimensional variational assimilation of ozone data in weather-prediction models. Quart J Roy Meteor Soc 122:1545–1571

    Article  Google Scholar 

  • Riishøjgaard LP, Källén E (1997) On the correlation between ozone and potential vorticity for large-scale Rossby waves. J Geophys Res 102:8793–8804

    Article  Google Scholar 

  • Rodgers EB, Stout J, Steranka J et al (1990) Tropical cyclone-upper atmospheric interaction as inferred from satellite total ozone observations. J Appl Meteor 29:934–954

    Article  Google Scholar 

  • Rösevall JD, Murtagh DP, Urban J et al (2008) A study of ozone depletion in the 2004/2005 Arctic winter based on data from Odin/SMR and Aura/MLS. J Geophys Res 113:D13301. doi:10.1029/2007JD009560

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H et al (2010) NCEP Climate Forecast System Reanalysis (CFSR) 6-hourly Products, January 1979 to December 2010. Res Data Archive Nat Center Atmos Res Comp Inform Syst Lab. doi:10.5065/D69K487J

    Google Scholar 

  • Segers AJ, Eskes HJ, Van Der A et al (2005) Assimilation of GOME ozone profiles and a global chemistry-transport model using a Kalman filter with anisotropic covariance. Quart J Roy Meteor Soc 131:477–502

    Article  Google Scholar 

  • Shapiro MA, Krueger AJ, Kennedy PJ (1982) Nowcasting the position and intensity of jet streams using a satellite-borne total ozone mapping spectrometer, Nowcasting. Academic Press, San Diego, pp 137–145

    Google Scholar 

  • Stajner I, Winslow N, Rood RB et al (2004) Monitoring of observation errors in the assimilation of satellite ozone data. J Geophys Res 109:D06309. doi:10.1029/2003JD004118

    Article  Google Scholar 

  • Stout J, Rodgers EB (1992) Nimbus-7 total ozone observations of western North Pacific tropical cyclones. J Appl Meteor 31:758–783

    Article  Google Scholar 

  • Struthers H, Brugge R, Lahoz WA et al (2002) Assimilation of ozone profiles and total column measurements into a global general circulation model. J Geophys Res 107:ACH 10-1–ACH 10-14

  • Wang H, Zou X, Li G (2012) An improved quality control for AIRS total column ozone observations within and around hurricanes. J Atmos Oceanic Technol 29:417–432

    Article  Google Scholar 

  • Wang Y, Wang B, Fei J et al (2013) The effects of assimilating satellite brightness temperature and bogus data on the simulation of Typhoon Kalmaegi (2008). J Meteor Res 27:415–434

    Google Scholar 

  • Wargan K, Pawson S, Stajner I et al (2010) Spatial structure of assimilated ozone in the upper troposphere and lower stratosphere. J Geophys Res 115:D24316. doi:10.1029/2010JD013941

    Article  Google Scholar 

  • Wu LG, Wang B (2000) A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon Wea Rev 128:1899–1911

    Article  Google Scholar 

  • Wu Y, Zou X (2008) Numerical test of a simple approach for using TOMS total ozone data in hurricane environment. Quart J Roy Meteor Soc 134:1397–1408

    Article  Google Scholar 

  • Xiao Q, Zou X, Wang B (2000) Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Mon Wea Rev 128:2252–2269

    Article  Google Scholar 

  • Xiao Q, Chen L, Zhang X (2009) Evaluations of BDA scheme using the Advanced Research WRF (ARW) model. J Appl Meteor Climatol 48:680–689

    Article  Google Scholar 

  • Zhang X, Xiao Q, Fitzpatrick PJ (2007) The impact of multisatellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Mon Wea Rev 135:526–548

    Article  Google Scholar 

  • Zhao Y, Wang B, Ji Z et al (2005) Improved track forecasting of a typhoon reaching landfall from four-dimensional variational data assimilation of AMSU-A retrieved data. J Geophys Res 110:D14101. doi:10.1029/2004JD005267

    Google Scholar 

  • Zhao Y, Wang B, Wang Y (2007) Initialization and simulation of a landfalling typhoon using a variational bogus mapped data assimilation (BMDA). Meteor Atmos Phys 98:269–282

    Article  Google Scholar 

  • Zou X, Wu Y (2005) On the relationship between Total Ozone Mapping Spectrometer (TOMS) ozone and hurricanes. J Geophys Res 110:D06109. doi:10.1029/2004JD005019

    Article  Google Scholar 

  • Zou X, Xiao Q (2000) Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J Atmos Sci 57:836–860

    Article  Google Scholar 

  • Zou X, Vandenberghe F, Pondeca M et al (1997) Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note NCAR/TN-435—STR, National Center for Atmospheric Research, Boulder. pp 110

  • Zou X, Xiao Q, Lipton AE et al (2001) A numerical study of the effect of GOES sounder cloud-cleared brightness temperatures on the prediction of Hurricane Felix. J Appl Meteor 40:34–55

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Beijige Fund of Jiangsu Institute of Meteorological Sciences (BJG201512), the Key Scientific Research Projects of Jiangsu Provincial Meteorological Bureau (KZ201605), the National Natural Science Foundation of China (41201045), and the Research Innovation Program for College Graduates of Jiangsu Province (CXZZ13_0506). The authors are grateful to Dr. Xiaolei Zou (Florida State University) for her support on this research. The comments from the anonymous reviewers are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Liu.

Additional information

Responsible Editor: X.-Y. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, W. Improved hurricane forecasting from a variational bogus and ozone data assimilation (BODA) scheme: case study. Meteorol Atmos Phys 128, 715–732 (2016). https://doi.org/10.1007/s00703-016-0460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-016-0460-2

Keywords

Navigation