Skip to main content
Log in

A colorimetric assay for Hg(II) based on the use of a magnetic aptamer and a hybridization chain reaction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a colorimetric assay for mercury(II) ion. It is based on a hybridization chain reaction (HCR) and the use of Fe3O4@Au nanoparticles (NPs). Aptamers specific for Hg(II) were immobilized on the surface of the Fe3O4@AuNPs. The presence of Hg(II) inhibits the HCR process and this enables less Methylene Blue (MB) to intercalate into the dsDNA structure. After magnetic separation of the DNA-loaded NPs carrying Hg(II), the change in the absorbance of the residual MB solution is measured at 663 nm. The respective calibration plot is linear in the 1 to 300 nM concentration range, with a 0.7 nM detection limit (at a signal-to-noise ratio of 3). The method displays excellent selectivity over other metal ions. It was applied to the analysis of Hg(II) in spiked river water.

Fe3O4@Au nanoparticles (NPs) were fabricated, then aptamers were modified on the surface of Fe3O4@AuNPs. The absence of Hg2+ leads to the formation of dsDNA polymers via hybridization chain reaction (HCR) process on the surface of Fe3O4@AuNPs, Methylene Blue (MB) intercalates into these DNA polymers, which can be easily separated from MB solution by applying a magnet, thereby inducing a color change of the MB solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang HQ, Li F, Dever B, Li XF, Le XC (2013) DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem Rev 113(4):2812–2841

    Article  CAS  Google Scholar 

  2. Guo YH, Yao WR, Xie YF, Zhou XD, JM H, Pei RJ (2015) Logic gates based on G-quadruplexes: principles and sensor applications. Microchim Acta 183(1):21–34

    Article  Google Scholar 

  3. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2014) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1):1–41

    Google Scholar 

  4. Zhou YY, Tang L, Zeng GM, Zhang C, Zhang Y, Xie X (2016) Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: a review. Sensors Actuators B Chem 223:280–294

    Article  CAS  Google Scholar 

  5. Zhou W, Jimmy Huang PJ, Ding J, Liu J (2014) Aptamer-based biosensors for biomedical diagnostics. Analyst 139(11):2627–2640

    Article  CAS  Google Scholar 

  6. Paleček E, Bartošík M (2012) Electrochemistry of nucleic acids. Chem Rev 112(6):3427–3481

    Article  Google Scholar 

  7. Law WC, Yong KT, Baev A, Prasad PN (2011) Sensitivity improved surface Plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 5(6):4858–4864

    Article  CAS  Google Scholar 

  8. Sui N, Wang LN, Xie FX, Liu FY, Xiao HL, Liu MH, WW Y (2016) Ultrasensitive aptamer-based thrombin assay based on metal enhanced fluorescence resonance energy transfer. Microchim Acta:1–8. doi:10.1007/s00604-016-1774-y

  9. Ng BYC, Wee EJH, West NP, Trau M (2016) Naked-eye colorimetric and electrochemical detection of mycobacterium tuberculosis—toward rapid screening for active case finding. ACS. Sensors 1(2):173–178

    CAS  Google Scholar 

  10. Liu M, Zhao HM, Chen S, Yu H, Quan X (2012) Interface engineering catalytic graphene for smart colorimetric Biosensing. ACS Nano 6(4):3142–3151

    Article  CAS  Google Scholar 

  11. Zhang LP, Li L (2015) Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic. Microchim Acta 183(1):485–490

    Article  Google Scholar 

  12. Ye XS, Shi H, He XX, Wang KM, He DG, Yan LA, FZ X, Lei YL, Tang JL, YR Y (2015) Iodide-responsive Cu–Au nanoparticle-based colorimetric platform for ultrasensitive detection of target cancer cells. Anal Chem 87(14):7141–7147

    Article  CAS  Google Scholar 

  13. Liu P, Yang X, Sun S, Wang Q, Wang KM, Huang J, Liu J, He LL (2013) Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal Chem 85(16):7689–7695

    Article  CAS  Google Scholar 

  14. Zhang M, Ye BC (2011) Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles. Anal Chem 83(5):1504–1509

    Article  CAS  Google Scholar 

  15. Xianyu Y, Zhu K, Chen WW, Wang XF, Zhao HM, Sun JS, Wang Z, Jiang XG (2013) Enzymatic assay for Cu(II) with horseradish peroxidase and its application in colorimetric logic gate. Anal Chem 85(15):7029–7032

    Article  CAS  Google Scholar 

  16. Wang Q, Yang X, Yang X, Wang K, Zhang H, Liu P (2015) An enzyme-free colorimetric assay using hybridization chain reaction amplification and split aptamers. Analyst 140(22):7657–7662

    Article  CAS  Google Scholar 

  17. Zhu Y, Wang HJ, Wang L, Zhu J, Jiang W (2016) Cascade signal amplification based on copper nanoparticle-reported rolling circle amplification for ultrasensitive electrochemical detection of the prostate cancer biomarker. ACS Appl Mater Interfaces 8(4):2573–2581

    Article  CAS  Google Scholar 

  18. Zhao HZ, Dong JJ, Zhou FL, Li BX (2015) G-quadruplex − based homogenous fluorescence platform for ultrasensitive DNA detection through isothermal cycling and cascade signal amplification. Microchim Acta 182(15):2495–2502

    Article  CAS  Google Scholar 

  19. Liu HY, Li L, Duan LL, Wang X, Xie YX, Tong LL, Wang Q, Tang B (2013) High specific and ultrasensitive isothermal detection of MicroRNA by padlock probe-based exponential rolling circle amplification. Anal Chem 85(16):7941–7947

    Article  CAS  Google Scholar 

  20. Hou T, Li W, Liu XJ, Li F (2015) Label-free and enzyme-free homogeneous electrochemical Biosensing strategy based on hybridization chain reaction: a facile, sensitive, and highly specific MicroRNA assay. Anal Chem 87(22):11368–11374

    Article  CAS  Google Scholar 

  21. Dirks R, Pierce N (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101(43):15275–15278

    Article  CAS  Google Scholar 

  22. Yao GH, Liang RP, XD Y, Huang CF, Zhang L, Qiu JD (2015) Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques. Anal Chem 87(2):929–936

    Article  CAS  Google Scholar 

  23. Rohs R, Sklenar H, Lavery R, Röder B (2000) Methylene blue binding to DNA with alternating GC Base sequence: a modeling study. J Am Chem Soc 122(12):2860–2866

    Article  CAS  Google Scholar 

  24. Wang K, Chen YP, Lei Y, Zhong GX, Al L, Zheng YJ, Sun ZL, Lin XH, Chen YZ (2013) Electrochemical method for monitoring the progress of polymerase chain reactions using Methylene blue as an indicator. Microchim Acta 180(9):871–878

    Article  CAS  Google Scholar 

  25. Zheng DL, Wang QX, Gao F, Wang QH, Qiu WW, Gao F (2014) Development of a novel electrochemical DNA biosensor based on elongated hexagonal-pyramid CdS and poly-isonicotinic acid composite film. Biosens Bioelectron 60:167–174

    Article  CAS  Google Scholar 

  26. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44(18):2782–2785

    Article  CAS  Google Scholar 

  27. Ji BT, Giovanelli E, Habert B, Spinicelli P, Nasilowski M, XZ X, Lequeux N, Hugonin J-P, Marquier F, Greffet J-J, Dubertret B (2015) Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat Nanotechnol 10(2):170–175

    Article  CAS  Google Scholar 

  28. Sui N, Wang LN, Yan TF, Liu FY, Sui J, Jiang YJ, Wan J, Liu MH, WW Y (2014) Selective and sensitive biosensors based on metal-enhanced fluorescence. Sensors Actuators B Chem 202:1148–1153

    Article  CAS  Google Scholar 

  29. Wang H, Goodrich GP, Tam F, Oubre C, Nordlander P, Halas NJ (2005) Controlled texturing modifies the surface topography and plasmonic properties of Au Nanoshells. J Phys Chem B 109(22):11083–11087

    Article  CAS  Google Scholar 

  30. Chen ZB, Zhang CM, Tan Y, Zhou TH, Ma H, Wan CQ, Lin YQ, Li K (2014) Chitosan-functionalized gold nanoparticles for colorimetric detection of mercury ions based on chelation-induced aggregation. Microchim Acta 182(3):611–616

    Google Scholar 

  31. Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF (2014) Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86(14):6843–6849

    Article  CAS  Google Scholar 

  32. Ma Y, Jiang L, Mei Y, Song R, Tian D, Huang H (2013) Colorimetric sensing strategy for mercury(ii) and melamine utilizing cysteamine-modified gold nanoparticles. Analyst 138(18):5338–5343

    Article  CAS  Google Scholar 

  33. Chen ZB, Zhang CM, Gao QG, Wang G, Tan LL, Liao Q (2015) Colorimetric signal amplification assay for mercury ions based on the catalysis of gold amalgam. Anal Chem 87(21):10963–10968

    Article  CAS  Google Scholar 

  34. Chen HB, Zhang XF, Sun HX, Sun XR, Shi YH, Xu SJ, Tang YL (2015) Visual detection of mercury(ii) based on recognition of the G-quadruplex conformational transition by a cyanine dye supramolecule. Analyst 140(21):7170–7174

    Article  CAS  Google Scholar 

  35. Wang ZX, Guo YX, Ding SN (2015) Fluorometric determination of cadmium(II) and mercury(II) using nanoclusters consisting of a gold-nickel alloy. Microchim Acta 182(13):2223–2231

    Article  CAS  Google Scholar 

  36. Zhang JR, Huang WT, Zeng AL, Luo HQ, Li NB (2015) Ethynyl and π-stacked thymine–Hg2+–thymine base pairs enhanced fluorescence quenching via photoinduced electron transfer and simple and sensitive mercury ion sensing. Biosens Bioelectron 64:597–604

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21301103, 21501106), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Taishan Scholarship, the Shandong Province High Education Research and Development Program (J13LA08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Sui or William W. Yu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, F., Sui, N. et al. A colorimetric assay for Hg(II) based on the use of a magnetic aptamer and a hybridization chain reaction. Microchim Acta 183, 2855–2860 (2016). https://doi.org/10.1007/s00604-016-1932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1932-2

Keywords

Navigation