Skip to main content

Advertisement

Log in

Pharmacokinetics of the transdermal delivery of benfotiamine

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Accumulation of advanced glycation endpoints is a trigger to the development of diabetic peripheral neuropathy, which is a common complication of diabetes. Oral administration of benfotiamine (BFT) has shown some preclinical and clinical promise as a treatment for diabetic peripheral neuropathy. The purpose of this study was to evaluate the method of transdermal delivery of BFT as a possible, viable route of administration for the treatment of diabetic peripheral neuropathy.

Methods

A single application of 10 mg of BFT was given to guinea pigs topically. The levels of thiamine (T), thiamine monophosphate, thiamine diphosphate, S-benzoylthiamine and BFT were measured in the blood, skin and muscle at different time points within 24 h.

Results

At the 24-h time point, following the single BFT dose, the T level was increased 10× in the blood, more than 7× in the skin and almost 4× in the muscle compared to the untreated animals. The total T content (total) was increased 7× in the blood, 17× in the skin and 3× in the muscle compared to the untreated animals.

Conclusions

This strong increase in the tissue levels of T and the associated metabolic derivatives levels found in the blood and local tissues following a single dose indicate that topically applied BFT may be a viable and advantageous delivery method for the treatment of diabetic peripheral neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Head KA (2006) Peripheral neuropathy: pathogenic mechanisms and alternative therapies. Altern Med Rev 11(4):294–329

    PubMed  Google Scholar 

  2. Tesfaye S, Boulton AJ, Dickenson AH (2013) Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care 36(9):2456–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vincent AM, Calabek B, Roberts L, Feldman EL (2013) Biology of diabetic neuropathy. Handb Clin Neurol 115:591–606

    Article  PubMed  Google Scholar 

  4. Cameron NE, Gibson TM, Nangle MR, Cotter MA (2005) Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann N Y Acad Sci 1043:784–792

    Article  CAS  PubMed  Google Scholar 

  5. Duran-Jimenez B, Dobler D, Moffatt S et al (2009) Advanced glycation endproducts in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 58:2893–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stracke H, Hammes HP, Werkmann D et al (2001) Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats. Exp Clin Endocrinol Diabetes 109(6):330–336

    Article  CAS  PubMed  Google Scholar 

  7. Pomero F, Molinar Min A, La Selva M, Allione A, Molinatti GM, Porta M (2001) Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose. Acta Diabetol 38(3):135–138

    Article  CAS  PubMed  Google Scholar 

  8. Beltramo E, Berrone E, Buttiglieri S, Porta M (2004) Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose. Diabetes Metab Res Rev 20(4):330–336

    Article  CAS  PubMed  Google Scholar 

  9. Gadau S, Emanueli C, Van Linthout S et al (2006) Benfotiamine accelerates the healing of ischaemic diabetic limbs in mice through protein kinase B/A kt-mediated potentiation of angiogenesis and inhibition of apoptosis. Diabetologia 49(2):405–420

    Article  CAS  PubMed  Google Scholar 

  10. Sánchez-Ramírez GM, Caram-Salas NL, Rocha-González HI et al (2006) Benfotiamine relieves inflammatory and neurophathic pain in rats. Eur J Pharmacol 530(1–2):48–53

    Article  PubMed  Google Scholar 

  11. Karachalias N, Babaei-Jadidi R, Kupich C, Ahmed N, Thornalley PJ (2005) High-dose thiamine therapy counters dyslipidemia and advanced glycation of plasma protein in streptozotocin-induced diabetic rats. Ann N Y Acad Sci 1043:777–783

    Article  CAS  PubMed  Google Scholar 

  12. Stirban A, Negrean M, Stratmann B et al (2006) Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care 29(9):2064–2071

    Article  CAS  PubMed  Google Scholar 

  13. Stracke H, Gaus W, Achenbach U, Federlin K, Bretzel RG (2008) Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes 116(10):600–605

    Article  CAS  PubMed  Google Scholar 

  14. Haupt E, Ledermann H, Köpcke W (2005) Benfotiamine in the treatment of diabetic polyneuropathy—a three-week randomized, controlled pilot study (BEDIP study). Int J Clin Pharmacol Ther 43(2):71–77

    Article  CAS  PubMed  Google Scholar 

  15. Du X, Edelstein D, Brownlee M (2008) Oral benfotiamine plus alpha-lipoic acid normalises complication-causing pathways in type 1 diabetes. Diabetologia 51(10):1930–1932

    Article  CAS  PubMed  Google Scholar 

  16. Hammes HP, Du X, Edelstein D et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9(3):294–299

    Article  CAS  PubMed  Google Scholar 

  17. Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ (2003) Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 52:2110–2120

    Article  CAS  PubMed  Google Scholar 

  18. Karachalias N, Babaei-Jadidi R, Kupich C, Ahmed N, Thornalley PJ (2005) High dose thiamine therapy counters dyslipidemia and advanced glycation of plasma protein in streptozotocin-induced diabetic rats. Ann N Y Acad Sci 1043:777–783

    Article  CAS  PubMed  Google Scholar 

  19. Booth AA, Khalifah RG, Hudson BG (1996) Thiamine pyrophosphate and pyridoxamine inhibit the formation of antigenic advanced glycation end-products: comparison with aminoguanidine. BioChem Biophys Res Commun 220:113–119

    Article  CAS  PubMed  Google Scholar 

  20. Wu S, Ren J (2006) Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-Alpha. Neurosci Lett 394(2):158–162

    Article  CAS  PubMed  Google Scholar 

  21. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. WH Freeman, New York

    Google Scholar 

  22. Loew D (1996) Pharmacokinetics of thiamine derivatives especially of benfotiamine. Int J Clin Pharmacol Ther 34(2):47–50

    CAS  PubMed  Google Scholar 

  23. Rabbani N, Shahzad Alam S, Riaz S et al (2009) High dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a pilot randomised, double-blind, placebo-controlled study. Diabetologia 52:208–212

    Article  CAS  PubMed  Google Scholar 

  24. Smithline H, Donnino M, Greenblatt D (2012) Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects. BMC Clin Pharmacol 12:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Volvert ML, Seyen S, Piette M et al (2008) Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol 8:10

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rabbani N, Thornalley PJ (2011) Emerging role of thiamine therapy for prevention and treatment of early-stage diabetic nephropathy. Diabetes Obes Metab 13:577–583

    Article  CAS  PubMed  Google Scholar 

  27. Babaei-Jadidi R, Karachalias N, Kupich C, Ahmed N, Thornalley PJ (2004) High dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia 47:2235–2246

    Article  CAS  PubMed  Google Scholar 

  28. Fraser DA, Diep LM, Hovden IA et al (2012) The effects of long-term oral benfotiamine supplementation on peripheral nerve function and inflammatory markers in patients with type 1 diabetes: a 24-month, double-blind, randomized, placebo-controlled trial. Diabetes Care 35(5):1095–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ziems M, Netzel M, Bitsch I (2000) Biokinetic parameters and metabolism of S-benzoylthiamine-O-monophosphate. BioFactors 11:109–110

    Article  CAS  PubMed  Google Scholar 

  30. Shindo H, Okamoto K, Ji Totsu (1967) Transport of organic compounds through biological membranes. I. Accumulative uptake of S-benzoylthiamine by human erythrocytes. ChemPharmBull 15:295–302

    CAS  Google Scholar 

  31. Herve C, Beyne P, Delacoux E (1994) Determination of thiamine and its phosphate esters in human erythrocytes by high-performance liquid chromatography with isocratic elution. J Chromatogr B 653:217–220

    Article  CAS  Google Scholar 

  32. Lynch PLM, Trimble ER, Young IS (1997) High-performance liquid chromatographic determination of thiamine diphosphate in erythrocytes using internal standard methodology. J Chromatogr B 701:120–123

    Article  CAS  Google Scholar 

  33. Talwar D, Davidson H, Cooney J, JO’Reilly D (2000) Vitamin B1 status assessed by direct measurement of thiamin pyrophosphate in erythrocytes or whole blood by HPLC: comparison with erythrocyte transketolase activation assay. Clin Chem 46(5):704–710

    CAS  PubMed  Google Scholar 

  34. Van Landeghem BAJ, Puts J, Claessens HA (2005) The analysis of thiamin and its derivatives in whole blood samples under high pH conditions of the mobile phase. J Chromatogr B 822:316–321

    Article  Google Scholar 

  35. Ziems M, Netzel M, Peter S, Bitsch I (1995) Entwicklung einer HPLC-Method zur Bestimmung von Benfotiamin und seinem Metaboliten S-Benzoylthiamin in menschlichem Vollblut. Vitamine und Zusatzstoffe in dr Ernährung von Mensch und Tier, 5. Symposium Jena, pp 320–323

  36. Rogers EF (1972) Modified thiamines. In: Sebrell WH, Harris RS (eds) The vitamins: chemistry, physiology, pathology, methods. Academic Press, New York, pp 130–133

    Google Scholar 

  37. Frank T, Bitsch R, Maiwald J, Stein G (2000) High thiamine diphosphate concentrations in erythrocytes can be achieved in dialysis patients by oral administration of benfotiamine. Eur J Clin Pharmacol 56(3):251–257

    Article  CAS  PubMed  Google Scholar 

  38. Beltramo E, Berrone E, Tarallo S, Porta M (2008) Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol 45(3):131–141

    Article  CAS  PubMed  Google Scholar 

  39. Jung EH, Takeuchi T, Nishino K, Itokawa Y (1988) Studies on the nature of thiamine pyrophosphate binding and dependency on divalent cations of transketolase from human erythrocytes. Int J Biochemistry 20(11):1255–1259

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All funding for this research was provided by BioChemics, Inc.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All human and animal studies have been performed in accordance with the ethical standards of the responsible committee on animal experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent

Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhu.

Additional information

Managed by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Varadi, G. & Carter, S.G. Pharmacokinetics of the transdermal delivery of benfotiamine. Acta Diabetol 53, 317–322 (2016). https://doi.org/10.1007/s00592-015-0776-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-015-0776-2

Keywords

Navigation