Skip to main content
Log in

Geodetic data shed light on ongoing caldera subsidence at Askja, Iceland

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Subsidence within the main caldera of Askja volcano in the North of Iceland has been in progress since 1983. Here, we present new ground- and satellite-based deformation data, which we interpret together with new and existing micro-gravity data, to help understand which processes may be responsible for the unrest. From 2003 to 2007, we observe a net micro-gravity decrease combined with subsidence and from 2007 to 2009 we observe a net micro-gravity increase while the subsidence continues. We infer subsidence is caused by a combination of a cooling and contracting magma chamber at a divergent plate boundary. Mass movements at active volcanoes can be caused by several processes, including water table/lake level movements, hydrothermal activity and magma movements. We suggest that, here, magma movement and/or a steam cap in the geothermal system of Askja at depth are responsible for the observed micro-gravity variations. In this respect, we rule out the possibility of a shallow intrusion as an explanation for the observed micro-gravity increase but suggest magma may have flowed into the residing shallow magma chamber at Askja despite continued subsidence. In particular, variable compressibility of magma residing in the magma chamber as well as compressibility of the surrounding rock may be the reason why this additional magma did not create any detectable surface deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Anderson K, Segall P (2011) Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J Geophys Res 116:B07204. doi:10.1029/2010JB007939

    Article  Google Scholar 

  • Battaglia M, Hill DP (2009) Analytical modeling of gravity changes and crustal deformation at volcanoes: the Long Valley caldera, California, case study. Tectonophysics 471:45–57. doi:10.1016/j.tecto.2008.09.040

    Article  Google Scholar 

  • Battaglia M, Segall P, Roberts C (2003) The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of the source using geodetic and micro-gravity data. J Volcanol Geotherm Res 127:219–245. doi:10.1016/S0377-0273(03)00171-9

    Article  Google Scholar 

  • Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G (2006) Evidence for fluid migration as the cause of unrest at Campi Flegrei caldera (Italy). Geophys Res Lett 33:L01307. doi:10.1029/2005GL024904

    Article  Google Scholar 

  • Camitz J, Sigmundsson F, Foulger G, Jahn CH, Volksen C, Einarsson P (1995) Plate boundary deformation and continuing deflation of the Askja volcano, North Iceland, determined with GPS, 1987–1993. Bull Volcanol 57(2):136–145. doi:10.1007/BF00301404

    Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern

  • de Zeeuw-van Dalfsen E, Pedersen R, Hooper A, Sigmundsson F (2012) Subsidence of Askja caldera 2000–2009: modelling of deformation processes at an extensional plate boundary, constrained by time series InSAR analysis. J Volcanol Geotherm Res 213–214:72–82. doi:10.1016/j.jvolgeores.2011.11.004

    Article  Google Scholar 

  • de Zeeuw-van Dalfsen E, Rymer H, Sigmundsson F, Sturkell E (2005) Net gravity decreases at Askja volcano, Iceland: constraints on processes responsible for continuous caldera deflation, 1988–2003. J Volcanol Geotherm Res 139:227–239. doi:10.1016/j.jvolgeores.2004.08.008

    Article  Google Scholar 

  • Dickinson H (2010) Finite element models for the deformation of the Askja volcanic complex and rift segment, Iceland. M.Sc. thesis. The University of Alabama, Tuscaloosa, AL, USA

  • Einarsson P, Saemundsson K (1987) Earthquake epicenters 1982–1985 and volcanic systems in Iceland (map). In: Sigfusson T (ed) I Hlutarins Edli. Menningarsjodur, Reykjavik

    Google Scholar 

  • Fialko Y, Khazan Y, Simons M (2001) Horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophys J Int 146:181–190. doi:10.1046/j.1365-246X.2001.00452.x

    Article  Google Scholar 

  • Franzson H, Gudlaugsson S, Fridleifsson G (2001) Petrophysical properties of Icelandic rocks. Proceedings of the 6th Nordic Symposium on Petrophysics. Trondheim, Norway

  • Gottsmann J, Berrino G, Rymer H, Williams-Jones G (2003) Hazard assessment during caldera unrest at the Campi Flegrei, Italy: a contribution from gravity/height gradients. Earth Planet Sci Lett 211:295–309. doi:10.1016/S0012-821X(03)00225-5

    Article  Google Scholar 

  • Gottsmann J, Folch A, Rymer H (2006) Unrest at Campi Flegrei: a contribution to the magmatic versus hydrothermal debate from inverse and finite element modeling. J Geophys Res 111:B07203. doi:10.1029/2005JB003745

    Article  Google Scholar 

  • Hartley M, Thordarson T (2011) Formation of Öskjuvatn caldera at Askja, north Iceland: evolution of caldera collapse and implications for the lateral flow hypothesis. Geophys Res Abstr 13:EGU2011–10053

    Google Scholar 

  • Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:L16302. doi:10.1029/2008GL034654

    Article  Google Scholar 

  • Hooper A, Ófeigsson B, Sigmundsson F, Lund B, Einarsson P, Geirsson H, Sturkell E (2011) Increased crustal capture of magma at volcanoes with retreating ice caps. Nat Geosci 4:783–786. doi:10.1038/ngeo1269

    Article  Google Scholar 

  • Jakobsdóttir SS, Roberts MJ, Gudmundson GB, Geirsson H, Slunga R (2008) Earthquake swarms at Upptyppingar, Northeast Iceland: a sign of magma intrusion? Stud Geophys Geod 52:513–528. doi:10.1007/s11200-008-0035-x

    Article  Google Scholar 

  • Johnson DJ, Sigmundsson F, Delaney PT (2000) Comment on Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence, with application to the 1960 collapse of Kilauea volcano by P.T. Delaney and D.F. McTigue. Bull Volcanol 61:491–493. doi:10.1007/s004450050006

    Article  Google Scholar 

  • Key J, White RS, Soosalu H, Jakobsdóttir SS (2011) Multiple melt injection along a spreading segment at Askja, Iceland. Geophys Res Lett 38:L05301. doi:10.1029/2010GL046264

    Google Scholar 

  • Mastin L, Roeloffs E, Beeler NM, Quick JE (2008) Constraints on the size, overpressure, and volatile content of the Mount St. Helens magma system from geodetic and dome-growth measurements during the 2004–2006+ eruption. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, chapter 22. U.S. Government Printing Office, Washington DC

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformation of the ground surface around them. B Earthq Res I 36:99–134

    Google Scholar 

  • Ólafsson J (1980) Temperature structure and water chemistry of the caldera lake Öskjuvatn, Iceland. Limnol Oceanogr 25(5):779–788

    Article  Google Scholar 

  • Pagli C, Sigmundsson F, Arnadottir T, Einarsson P, Sturkell E (2006) Deflation of the Askja volcanic system: constraints on the deformation source from combined inversion of satellite radar interferograms and GPS measurements. J Volcanol Geotherm Res 152:97–108. doi:10.1016/j.jvolgeores.2005.09.014

    Article  Google Scholar 

  • Pedersen R, Sigmundsson F, Masterlark T (2009) Rheologic controls on inter-rifting deformation of the Northern Volcanic Zone, Iceland. Earth Planet Sci Lett 281:14–26. doi:10.1016/j.epsl.2009.02.003

    Article  Google Scholar 

  • Rist S (1975) Stöduvötn OS-ROD7519. Orkustofnun, Reykjavik

    Google Scholar 

  • Rivalta E, Segall P (2008) Magma compressibility and the missing source for some dike intrusions. Geophys Res Lett 35:L04306. doi:10.1029/2007GL032521

    Article  Google Scholar 

  • Rivalta E (2010) Evidence that coupling to magma chambers controls the volume history and velocity of laterally propagating intrusions. J Geophys Res 115:B07203. doi:10.1029/2009JB006922

    Article  Google Scholar 

  • Rymer H (1989) A contribution to precision microgravity analysis using LaCoste and Romberg gravity meters. Geophysics J 97:311–322. doi:10.1111/j.1365-246X.1989.tb00503.x

    Article  Google Scholar 

  • Rymer H, Tryggvason E (1993) Gravity and elevation changes at Askja, Iceland. Bull Volcanol 55:362–371. doi:10.1007/BF00301147

    Article  Google Scholar 

  • Rymer H, Locke C, Ófeigsson BG, Einarsson P, Sturkell E (2010) New mass increase beneath Askja volcano, Iceland—a precursor to renewed activity? Terra Nova 22(4):309–313. doi:10.1111/j.1365-3121.2010.00948.x

    Google Scholar 

  • Saibi H, Gottsmann J, Ehara S (2010) Post-eruptive gravity changes from 1999 to 2004 at Unzen volcano (Japan): a window into shallow aquifer and hydrothermal dynamics. J Volcanol Geotherm Res 191:137–147. doi:10.1016/j.jvolgeores.2010.01.007

    Article  Google Scholar 

  • Segall P, Cervelli P, Owen S, Lisowski M, Miklius A (2001) Constraints on dike propagation from continuous GPS measurements. J Geophys Res 106:19301–19317. doi:10.1029/2001JB000229

    Article  Google Scholar 

  • Sigmundsson F, Gudmundsson MT (2005) Eruption of Grimsvötn volcano, November 1–6, 2004. Jokull 54:135–138

    Google Scholar 

  • Sigvaldason GE (1964) Some geochemical and hydrothermal aspects of the 1961 Askja eruption. Beiträge zur Mineralogie und Petrographie 10:263–274

    Google Scholar 

  • Soosalu H, Key J, White RS, Knox C, Einarsson P, Jakobsdóttir SS (2010) Lower-crustal earthquakes caused by magma movement beneath Askja volcano on the north Icelandic rift. Bull Volcanol 72:55–62. doi:10.1007/s00445-009-0297-3

    Article  Google Scholar 

  • Sturkell E, Sigmundsson F (2000) Continuous deflation of the Askja Caldera, Iceland, during the 1983–1998 non-eruptive period. J Geophys Res 105(B11):25671–25684. doi:10.1029/2000JB900178

    Article  Google Scholar 

  • Sturkell E, Sigmundsson F, Slunga R (2006) 1983–2003 decaying rate of deflation at Askja caldera: pressure decrease in an extensive magma plumbing system at a spreading plate boundary. Bull Volcanol 68:727–735. doi:10.1007/s00445-005-0046-1

    Article  Google Scholar 

  • Sturkell E, Sigmundsson F, Geirsson H, Ólafsson H, Theodórsson T (2008) Multiple volcano deformation sources in a post-rifting period: 1989–2005 behaviour of Krafla, Iceland constrained by levelling, tilt and GPS observations. J Volcanol Geotherm Res 177:405–417. doi:10.1016/j.jvolgeores.2008.06.013

    Article  Google Scholar 

  • Tryggvason E (1989a) Ground deformation in Askja, Iceland: its source and possible relation to flow of the mantle plume. J Volcanol Geotherm Res 39:61–71. doi:10.1016/0377-0273(89)90021-8

    Article  Google Scholar 

  • Tryggvason T (1989b) Measurement of ground deformation in Askja 1966 to 1989. Nordic Volcanological Institute 8904, University of Iceland

  • Watanabe H, Okubo S, Sakashita S, Maekawa T (1998) Drain-back process of basaltic magma in the summit conduit detected by microgravity observation at Izu-Oshima Volcano, Japan. Geophys Res Lett 25(15):2865–2868. doi:10.1029/98GL02216

    Article  Google Scholar 

Download references

Acknowledgements

This project was financed by a Marie Curie intra-European fellowship (from EDZ). EDZ thanks Claude Jaupart, Eleonora Rivalta, Petar Marinkovic, Judicael Decriem, Florian Lhuillier, Rósa Ólafsdóttir and Thom Warmerdam for discussion, help with data processing, MATLAB programming, GMT plotting, DEM preparation and other computer issues. EDZ thanks Rósa Ólafsdóttir for preparation of Fig. 1c. The CSA provided RADARSAT images for this project as part of a DRU proposal. MDA assisted with the data selection and ordering procedures. Financial support to RP was received from Rannís. The DEM and xy data files were produced by the Icelandic Geodetic Survey. GMT public domain software was used to prepare Fig.1a and b. We thank Glyn Williams-Jones, Takao Ohminato and an anonymous reviewer for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elske de Zeeuw-van Dalfsen.

Additional information

Editorial responsibility: T. Ohminato

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Zeeuw-van Dalfsen, E., Rymer, H., Sturkell, E. et al. Geodetic data shed light on ongoing caldera subsidence at Askja, Iceland. Bull Volcanol 75, 709 (2013). https://doi.org/10.1007/s00445-013-0709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0709-2

Keywords

Navigation