Skip to main content
Log in

Characterisation of full-length mitochondrial copies and partial nuclear copies (numts) of the cytochrome b and cytochrome c oxidase subunit I genes of Toxoplasma gondii, Neospora caninum, Hammondia heydorni and Hammondia triffittae (Apicomplexa: Sarcocystidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Genomic DNA was extracted from three oocyst isolates of Hammondia triffittae from foxes and two oocyst isolates of Hammondia heydorni from dogs, as well as from cell culture-derived tachyzoites of Toxoplasma gondii (RH strain) and Neospora caninum (NC-Liverpool strain), and examined by PCR with primers targeting the cytochrome b (cytb) and the cytochrome c oxidase subunit I (cox1) genes in order to characterise both genes and, if possible, the remainder of the mitochondrial genome of these species. Several primers were designed and used in various combinations to amplify regions within and between both genes and to determine gene order. When certain forward primers targeting cytb were used in combination with certain reverse primers targeting cox1, two overlapping sequences were obtained for each species and isolate studied, which showed that a full-length copy of cytb was followed 36–37 bp downstream by a full-length copy of cox1, and these sequences are believed to represent the true mitochondrial genes and the gene order in the mitochondrial genome of the four species examined. The cytb of T. gondii, N. caninum, H. heydorni and H. triffittae comprised a total of 1,080 bp (359 amino acids) and used ATG and TAA as start and stop codon, respectively. The cox1 of these species also used TAA as stop codon, whereas the most likely start codon was ATG, resulting in a gene comprising 1,491 bp (496 amino acids). Pair-wise sequence comparisons based on either cytb or cox1 clearly separated T. gondii from N. caninum and both of these species from the two Hammondia species, whereas the latter two species were 100 % identical at cytb and shared 99.3 % identity at cox1. Phylogenetic analyses using the maximum-likelihood method confirmed these findings and placed T. gondii in a clade separate from the three other species and all four Toxoplasmatinae in a sister clade to Eimeria spp. PCR with other primers and/or primer pairs than those used to obtain the full-length mitochondrial genes yielded several types of about 1–1.5 kb long sequences, which comprised stretches of the primer-targeted genes at both ends and an intervening non-coding sequence of various length and composition. Thus, portions of cytb could be found both upstream and downstream from portions of cox1 and portions of the same gene could be found adjacent to each other (cytbcox1; cox1cytb; cytbcytb; cox1cox1). Sequence comparisons revealed that some of these gene fragments were truncated genes, whereas others included the putative start or stop codon of the full-length mitochondrial genes. From the nature of the gene fragments and/or their flanking sequences, they are assumed to be located on the chromosomes of the nuclear genome and to represent nuclear mitochondrial DNA segments (numts) or pseudogenes. In the four species examined, there were no nucleotide differences between the full-length mitochondrial copies of cytb and cox1 and their various incomplete nuclear counterparts. With a few exceptions, identical numt types and closely similar flanking sequences were obtained for all four species, which would indicate that the original transfer of these mitochondrial genes to the nuclear genome and/or the majority of any subsequent rearrangements of these gene fragments within the nuclear genome happened before the four species diverged. Yet, there were species-specific differences in the nucleotide composition of the nuclear gene fragments, identical to the differences in the mitochondrial genes, which would indicate that the incomplete nuclear copies of cytb and cox1 have been continuously updated during evolution to conform to their mitochondrial parent genes. The PCR-based findings of numts were further supported by Basic Local Alignment Search Tool (BLAST) searches against genome sequences of T. gondii and N. caninum using the concatenated mitochondrial cytb/cox1 sequences as queries. These searches revealed the presence of numerous numts of eighth distinct types in both species, with each one having a fixed starting and end point with respect to the nucleotide positions in the full-length mitochondrial genes. Four numt types were completely homologous between both species, whereas four other types differed with respect to their end point and/or the absence/presence of a 96-bp deletion. Each starting and end point was associated with a unique 100–200-bp long flanking sequence, which further revealed the presence of numts. For both species, the numt types and their various arrangements with respect to each other were identical or similar to those obtained by PCR in all four species examined. None of the identified numts covered a full-length gene, but together, the various numts covered the entire mitochondrial cytb and cox1 genes in an overlapping manner. In addition, they were fairly closely spaced on the chromosomes, and these features may explain why the nuclear copies were preferentially amplified to the exclusion of the true mitochondrial genes with most primers and primer pairs used in the present study. The possibility of a similar high prevalence of numts occurring in the nuclear genome of dinoflagellates is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel J, Schares G, Orzeszko K, Gasser RB, Ellis JT (2006) Hammondia isolated from dogs and foxes are genetically distinct. Parasitology 132:187–192. doi:10.1017/S0031182005008814

    Article  PubMed  CAS  Google Scholar 

  • Bensasson D, Zhang D, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321. doi:10.1016/S0169-5347(01)02151-6

    Article  PubMed  Google Scholar 

  • Feagin JE (1992) The 6-kb element of Plasmodium falciparum encodes mitochondrial cytochrome genes. Mol Biochem Parasitol 52:145–148. doi:10.1016/0166-6851(92)90046-M

    Article  PubMed  CAS  Google Scholar 

  • Gjerde B (2012) Morphological and molecular characterization and phylogenetic placement of Sarcocystis capreolicanis and Sarcocystis silva n. sp. from roe deer (Capreolus capreolus) in Norway. Parasitol Res 110:1225–1237. doi:10.1007/s00436-011-2619-6

    Article  PubMed  Google Scholar 

  • Gjerde B, Dahlgren SS (2011) Hammondia triffittae n. comb. of foxes (Vulpes spp.): biological and molecular characteristics and differentiation from Hammondia heydorni of dogs. Parasitology 138:303–321. doi:10.1017/S0031182010001265

    Article  PubMed  CAS  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLOS Genet 6:e1000834. doi:10.1371/journal.pgen.1000834

    Article  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B 270:313–321. doi:10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  • Hikosaka K, Watanabe Y, Tsuji N, Kita K, Kishine H, Arisue N, Palacpac NM, Kawazu S, Sawai H, Horii T, Igarashi I, Tanabe K (2010) Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria. Mol Biol Evol 27:1107–1116. doi:10.1093/molbev/msp320

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Nakai Y, Watanabe Y, Tachibana S-I, Arisue N, Palacpac NM, Toyama T, Honma H, Horii T, Kita K, Tanabe K (2011a) Concatenated mitochondrial DNA of the coccidian parasite Eimeria tenella. Mitochondrion 11:273–278. doi:10.1016/j.mito.2010.10.003

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Watanabe Y, Kobayashi F, Waki S, Kita K, Tanabe K (2011b) Highly conserved gene arrangement of the mitochondrial genomes of 23 Plasmodium species. Parasitol Int 60:175–180. doi:10.1016/j.parint.2011.02.001

    Article  PubMed  CAS  Google Scholar 

  • Howe L, Castro IC, Schoener ER, Hunter S, Barraclough RK, Alley MR (2012) Malaria parasites (Plasmodium spp.) infecting introduced, native and endemic New Zealand birds. Parasitol Res 110:913–923. doi:10.1007/s00436-011-2577-z

    Article  PubMed  Google Scholar 

  • Inagaki Y, Hayashi-Ishimaru Y, Ehara M, Igarashi I, Ohama T (1997) Algae or protozoa: phylogenetic position of euglenophytes and dinoflagellates as inferred from mitochondrial sequences. J Mol Evol 45:295–300

    Article  PubMed  CAS  Google Scholar 

  • Jackson CJ, Norman JE, Schnare MN, Gray MW, Keeling PJ, Waller RF (2007) Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol 5:41. doi:10.1186/1741-7007-5-41

    Article  PubMed  Google Scholar 

  • Jackson CJ, Gornik SG, Waller RF (2012) The mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: character evolution within the highly derived mitochondrial genomes of dinoflagellates. Genome Biol Evol 4:59–72. doi:10.1093/gbe/evr122

    Article  PubMed  CAS  Google Scholar 

  • Kairo A, Fairlamb AH, Gobright E, Nene V (1994) A 7.1 kb linear DNA molecule of Theileria parva has scrambled rDNA sequences and open reading frames for mitochondrially encoded proteins. EMBO J 13:898–905

    PubMed  CAS  Google Scholar 

  • Kvicerová J, Pakandl M, Hypsa V (2008) Phylogenetic relationships among Eimeria spp. (Apicomplexa, Eimeriidae) infecting rabbits: evolutionary significance of biological and morphological features. Parasitology 135:443–452. doi:10.1017/S0031182007004106

    Article  PubMed  Google Scholar 

  • Lin RQ, Qiu LL, Liu GH, Wu XY, Weng YB, Xie WQ, Hou J, Pan H, Yuan ZG, Zou FC, Hu M, Zhu XQ (2011) Characterization of the complete mitochondrial genomes of five Eimeria species from domestic chickens. Gene 480:28–33. doi:10.1016/j.gene.2011.03.004

    Article  PubMed  CAS  Google Scholar 

  • Liu GH, Hou J, Weng YB, Song HQ, Li S, Yuan ZG, Lin RQ, Zhu XQ (2012) The complete mitochondrial genome sequence of Eimeria mitis (Apicomplexa: Coccidia). Mitochondrial DNA 23:341–343. doi:10.3109/19401736.2012.690750

    Article  PubMed  CAS  Google Scholar 

  • Lopez JV, Yuhki N, Masuda R, Modi W, O’Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol 39:174–190. doi:10.1007/BF00163806

    PubMed  CAS  Google Scholar 

  • Marsh AE, Barr BC, Packham AE, Conrad PA (1998) Description of a new Neospora species (Protozoa: Apicomplexa: Sarcocystidae). J Parasitol 84:983–991

    Article  PubMed  CAS  Google Scholar 

  • Marsh AE, Howe DK, Wang G, Barr BC, Cannon N, Conrad PA (1999) Differentiation of Neospora hughesi from Neospora caninum based on their immunodominant surface antigen, SAG1 and SRS2. Int J Parasitol 29:1575–1582. doi:10.1016/S0020-7519(99)00120-4

    Article  PubMed  CAS  Google Scholar 

  • Martinsen ES, Paperna I, Schall JJ (2006) Morphological versus molecular identification of avian Haemosporidia: an exploration of three species concepts. Parasitology 133:279–288. doi:10.1017/S0031182006000424

    Article  PubMed  CAS  Google Scholar 

  • McAllister MM, Dubey JP, Lindsay DS, Jolley WR, Wills RA, McGuire AM (1998) Dogs are definitive hosts of Neospora caninum. Int J Parasitol 28:1473–1478

    Article  PubMed  CAS  Google Scholar 

  • McFadden DC, Tomavo S, Berry EA, Boothroyd JC (2000) Characterization of cytochrome b from Toxoplasma gondii and Qo domain mutations as a mechanism of atovaquone-resistance. Mol Biochem Parasitol 108:1–12. doi:10.1016/S0166-6851(00)00184-5

    Article  PubMed  CAS  Google Scholar 

  • Mohammed OB, Davies A, Hussein HS, Daszak P, Ellis JT (2003) Hammondia heydorni from the Arabian mountain gazelle and red fox in Saudi Arabia. J Parasitol 89:535–539. doi:10.1645/0022-3395(2003)089

    Article  PubMed  CAS  Google Scholar 

  • Nash EA, Barbrook AC, Edwards-Stuart RK, Bernhardt K, Howe CJ, Nisbet RE (2007) Organization of the mitochondrial genome in the dinoflagellate Amphidinium carterae. Mol Biol Evol 24:1528–1536. doi:10.1093/molbev/msm074

    Article  PubMed  CAS  Google Scholar 

  • Nash EA, Nisbet RE, Barbrook AC, Howe CJ (2008) Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 24:328–335. doi:10.1016/j.tig.2008.04.001

    Article  PubMed  CAS  Google Scholar 

  • Norman JE, Gray MW (2001) A complex organization of the gene encoding cytochrome oxidase subunit 1 in the mitochondrial genome of the dinoflagellate, Crypthecodinium cohnii: homologous recombination generates two different cox1 open reading frames. J Mol Evol 53:351–363. doi:10.1007/s002390010225

    Article  PubMed  CAS  Google Scholar 

  • Ogedengbe JD, Hanner RH, Barta JR (2011) DNA barcoding identifies Eimeria species and contributes to the phylogenetics of coccidian parasites (Eimeriorina, Apicomplexa, Alveolata). Int J Parasitol 41:843–850. doi:10.1016/j.ijpara.2011.03.007

    Article  PubMed  CAS  Google Scholar 

  • Omori S, Sato Y, Hirakawa S, Isobe T, Yukawa M, Murata K (2008) Two extra chromosomal genomes of Leucocytozoon caulleryi; complete nucleotide sequences of the mitochondrial genome and existence of the apicoplast genome. Parasitol Res 103:953–957. doi:10.1007/s00436-008-1083-4

    Article  PubMed  Google Scholar 

  • Ossorio PN, Sibley LD, Boothroyd JC (1991) Mitochondrial-like DNA sequences flanked by direct and inverted repeats in the nuclear genome of Toxoplasma gondii. J Mol Biol 222:525–536. doi:10.1016/0022-2836(91)90494-Q

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084. doi:10.1093/molbev/msh110

    Article  PubMed  CAS  Google Scholar 

  • Schares G, Heydorn AO, Cüppers A, Mehlhorn H, Geue L, Peters M, Conraths FJ (2002) In contrast to dogs, red foxes (Vulpes vulpes) did not shed Neospora caninum upon feeding intermediate host tissues. Parasitol Res 88:44–52. doi:10.1007/s004360100496

    Article  PubMed  Google Scholar 

  • Slamovits CH, Saldarriaga JF, Larocque A, Keeling PJ (2007) The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J Mol Biol 372:356–368. doi:10.1016/j.jmb.2007.06.085

    Article  PubMed  CAS  Google Scholar 

  • Song H, Buhay JE, Whiting MF, Crandall KA (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci U S A 105:13486–13491. doi:10.1073/pnas.0803076105

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Safer HM (2003) A novel algorithm for computational identification of contaminated EST libraries. Nucleic Acids Res 31:1067–1074. doi:10.1093/nar/gkg170

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed  CAS  Google Scholar 

  • Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237–245. doi:10.1002/bies.200800164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Gjerde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gjerde, B. Characterisation of full-length mitochondrial copies and partial nuclear copies (numts) of the cytochrome b and cytochrome c oxidase subunit I genes of Toxoplasma gondii, Neospora caninum, Hammondia heydorni and Hammondia triffittae (Apicomplexa: Sarcocystidae). Parasitol Res 112, 1493–1511 (2013). https://doi.org/10.1007/s00436-013-3296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3296-4

Keywords

Navigation