Skip to main content

Advertisement

Log in

Immunization with recombinant actin from Trypanosoma evansi induces protective immunity against T. evansi, T. equiperdum and T. b. brucei infection

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

An Erratum to this article was published on 09 January 2009

Abstract

Actin gene of Trypanosoma evansi (STIB 806) was cloned and expressed in Escherichia coli. The predicted amino acid sequence of T. evansi actin shows 100%, 98.7%, and 93.1%, homology with Trypanosoma equiperdum, Trypanosoma brucei brucei, and Trypanosoma cruzi. Recombinant actin was expressed as inclusion bodies in E. coli. It was purified and renatured for immunological studies. Mice immunized with the renatured recombinant actin were protected from lethal challenge with T. evansi STIB 806, T. equiperdum STIB 818, and T. b. brucei STIB 940, showing 63.3%, 56.7%, and 53.3% protection, respectively. Serum collected from the rabbit immunized with recombinant actin inhibited the growth of T. evansi, T. equiperdum, and T. b. brucei in vitro cultivation. Serum from mice and rabbits immunized with recombinant actin only recognized T. evansi actin but not mouse actin. The results of this study suggest that the recombinant T. evansi actin induces protective immunity against T. evansi, T. equiperdum, and T. b. brucei infection and may be useful in the development of a vaccine with other cytoskeletal proteins to prevent animal trypanosomiasis caused by these three trypanosome species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balaban N, Waithaka HK, Njogu AR, Goldman R (1995) Intracellular antigens (microtubule-associated protein copurified with glycosomal enzymes)—possible vaccines against trypanosomiasis. J Infect Dis 172:845–850

    CAS  PubMed  Google Scholar 

  • Baltz T, Baltz D, Giroud C, Crockett J (1985) Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J 4:1273–1277

    CAS  PubMed  Google Scholar 

  • Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422

    Article  CAS  PubMed  Google Scholar 

  • Borst P, Rudenko G (1994) Antigenic variation in African trypanosomes. Science 264:1872–1873

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the pricinciple of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Broadhead R, Dawe H, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG, Gull K (2006) Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224–227

    Article  CAS  PubMed  Google Scholar 

  • Certa U, Gehersa P, Dobeli H, Matile H, Kocher HP, Shrivastava IK, Shaw AR, Perrin LH (1988) Aldolase activity of a Plasmodium falciparum protein with protective properties. Science 240:1036–1038

    Article  CAS  PubMed  Google Scholar 

  • Dessein AJ, Begley M, Demeure C, Caillol D, Fueri J, dos Reis MG, Andrade ZA, Prata A, Bina JC (1988) Human resistance to Schistosoma mansoni is associated with IgG reactivity to a 37 kDa larval suface antigen. J Immunol 140:2727–2736

    CAS  PubMed  Google Scholar 

  • Donelson JE (2003) Antigenic variation and the African trypanosoma genome. Acta Trop 85:391–404

    Article  CAS  PubMed  Google Scholar 

  • García-Salcedo JA, Pérez-Morga D, Gijón P, Dilbeck V, Pays E, Nolan DP (2004) A differential role for actin during the life cycle of Trypanosoma brucei. EMBO J 23:780–789

    Article  PubMed  Google Scholar 

  • Gull K (2002) The cell biology of parasitism in Trypanosoma brucei: insights and drug targets from genomic approaches? Curr Pharm Des 8:241–256

    Article  CAS  PubMed  Google Scholar 

  • Kohl L, Gull K (1998) Molecular architecture of the trypanosome cytoskeleton. Mol Biochem Parasitol 93:1–9

    Article  CAS  PubMed  Google Scholar 

  • Lanham SM, Godfrey DG (1970) Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol 28:521–534

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Qiao XG, Du DY, Lee MGS (2000) Receptor-mediated endocytosis in the procyclic form of Trypanosoma brucei. J Biol Chem 275:12032–12040

    Article  CAS  PubMed  Google Scholar 

  • Lubega GW, Byarugaba DK, Prichard RK (2002) Immunization with a tubulin-rich preparation from Trypanosoma brucei confers broad protection against African trypanosomosis. Exp Parasitol 102:9–22

    Article  CAS  PubMed  Google Scholar 

  • Luckins AG (1988) Trypanosoma evansi in Asia. Parasitol Today 4:137–141

    Article  CAS  PubMed  Google Scholar 

  • Luckins AG, Dwinger RH (2004) Non-tsetse-transmitted animal trypanosomiasis. In: Maudlin I, Holmes PH, Miles MA (eds) The trypanosomiases. CABI, Oxfordshire, pp 269–282

    Google Scholar 

  • Lun ZR, Fang Y, Wang CJ, Brun R (1993) Trypanosomiasis of domestic animals in China. Parasitol Today 9:41–45

    Article  CAS  PubMed  Google Scholar 

  • Rasooly R, Balaban N (2004) Trypanosome microtubule-associated protein p15 as a vaccine for the prevention of African sleeping sickness. Vaccine 22:1007–1015

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New York, pp 1256–1260

    Google Scholar 

  • Sher A, Pearce E, James S, Scott P (1989) Cell mediated vaccines against Schistosoma and Leishmania. J Cell Biochem 13(suppl):73E

    Google Scholar 

  • Wain GJ, Becker MM, Scott JC, Kalinna BH, Yang W, McManus DP (1994) Purification of a recombinant Schistosoma japonicum antigen homologous to the 22 kDa membrane-associated antigen of S. mansoni, a putative vaccine candidate against schistosomiasis. Gene 142:259–263

    Article  Google Scholar 

  • Wallberg M, Harris RA (2005) Co-infection with Trypanosoma brucei brucei prevents experimental autoimmune encephalomyelitis in DBA/1 mice through induction of suppressor APCs. Int Immunol 17:721–728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ming-Xu Wei (Sun-Yat-Sen University, Guangzhou, China) for providing the pET-28b vector. The experiments comply with the current laws of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San-Qiang Li.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00436-008-1320-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SQ., Yang, WB., Lun, ZR. et al. Immunization with recombinant actin from Trypanosoma evansi induces protective immunity against T. evansi, T. equiperdum and T. b. brucei infection. Parasitol Res 104, 429–435 (2009). https://doi.org/10.1007/s00436-008-1216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-1216-9

Keywords

Navigation