Skip to main content

Advertisement

Log in

SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Survival motor neuron (SMN) is the determining factor in spinal muscular atrophy, the most common genetic cause of childhood mortality. We have previously found that SMN regulates stem cell division, proliferation and differentiation in Drosophila. However, it is unknown whether a similar effect exists in vertebrates. Here, we show that SMN is enriched in highly proliferative embryonic stem cells (ESCs) in mice and reduction of SMN impairs the pluripotency of ESCs. Moreover, we find that SMN reduction activates ERK signaling and affects neuronal differentiation in vitro. Teratomas with reduced SMN grow more slowly and show weaker signals of neuronal differentiation than those with a normal level of SMN. Finally, we show that over-expression of SMN is protective for ESCs from retinoic acid-induced differentiation. Taken together, our results suggest that SMN plays a role in the maintenance of pluripotent ESCs and neuronal differentiation in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baumer D, Lee S, Nicholson G, Davies JL, Parkinson NJ, Murray LM, Gillingwater TH, Ansorge O, Davies KE, Talbot K (2009) Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet 5(12):e1000773. doi:10.1371/journal.pgen.1000773

    Article  PubMed Central  PubMed  Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Zhang X (1993) Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14(1):83–144

    CAS  PubMed  Google Scholar 

  • Borg R, Cauchi RJ (2013) The gemin associates of survival motor neuron are required for motor function in Drosophila. PLoS ONE 8(12):e83878. doi:10.1371/journal.pone.0083878

    Article  PubMed Central  PubMed  Google Scholar 

  • Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274(33):22932–22940

    Article  CAS  PubMed  Google Scholar 

  • Cameron SJ, Malik S, Akaike M, Lerner-Marmarosh N, Yan C, Lee JD, Abe J, Yang J (2003) Regulation of epidermal growth factor-induced connexin 43 gap junction communication by big mitogen-activated protein kinase1/ERK5 but not ERK1/2 kinase activation. J Biol Chem 278(20):18682–18688. doi:10.1074/jbc.M213283200

    Article  CAS  PubMed  Google Scholar 

  • Cauchi RJ (2010) SMN and Gemins: ‘we are family’… or are we?: insights into the partnership between Gemins and the spinal muscular atrophy disease protein SMN. BioEssays News Rev Mol Cell Devel Biol 32(12):1077–1089. doi:10.1002/bies.201000088

    Article  CAS  Google Scholar 

  • Cauchi RJ (2011) Gem formation upon constitutive Gemin3 overexpression in Drosophila. Cell Biol Int 35(12):1233–1238. doi:10.1042/CBI20110147

    Article  CAS  PubMed  Google Scholar 

  • Cauchi RJ, Sanchez-Pulido L, Liu JL (2010) Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies. Exp Cell Res 316(14):2354–2364. doi:10.1016/j.yexcr.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Du J, Lu G (2012) Cell growth arrest and apoptosis induced by Oct4 or Nanog knockdown in mouse embryonic stem cells: a possible role of Trp53. Mol Biol Rep 39(2):1855–1861. doi:10.1007/s11033-011-0928-6

    Article  CAS  PubMed  Google Scholar 

  • Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, Li P, Ang YS, Lim B, Robson P, Ng HH (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25(14):6031–6046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cobb MS, Rose FF, Rindt H, Glascock JJ, Shababi M, Miller MR, Osman EY, Yen PF, Garcia ML, Martin BR, Wetz MJ, Mazzasette C, Feng Z, Ko CP, Lorson CL (2013) Development and characterization of an SMN2-based intermediate mouse model of Spinal Muscular Atrophy. Hum Mol Genet 22(9):1843–1855. doi:10.1093/hmg/ddt037

    Article  CAS  PubMed  Google Scholar 

  • Cushing P, Bhalla R, Johnson AM, Rushlow WJ, Meakin SO, Belliveau DJ (2005) Nerve growth factor increases connexin43 phosphorylation and gap junctional intercellular communication. J Neurosci Res 82(6):788–801. doi:10.1002/jnr.20689

    Article  CAS  PubMed  Google Scholar 

  • Dietrich JE, Hiiragi T (2007) Stochastic patterning in the mouse pre-implantation embryo. Development 134(23):4219–4231

    Article  CAS  PubMed  Google Scholar 

  • Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221

    Article  CAS  PubMed  Google Scholar 

  • Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  • Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90(6):1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, Le TT, Morales PR, Rich MM, Burghes AH, Kaspar BK (2010) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 28(3):271–274. doi:10.1038/nbt.1610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao Z, Cox JL, Gilmore JM, Ormsbee BD, Mallanna SK, Washburn MP, Rizzino A (2012) Determination of protein interactome of transcription factor Sox2 in embryonic stem cells engineered for inducible expression of four reprogramming factors. J Biol Chem 287(14):11384–11397. doi:10.1074/jbc.M111.320143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gavrilov DK, Shi X, Das K, Gilliam TC, Wang CH (1998) Differential SMN2 expression associated with SMA severity. Nat Genet 20(3):230–231. doi:10.1038/3030

    Article  CAS  PubMed  Google Scholar 

  • Georgala PA, Carr CB, Price DJ (2011) The role of Pax6 in forebrain development. Dev Neurobiol 71(8):690–709. doi:10.1002/dneu.20895

    Article  CAS  PubMed  Google Scholar 

  • Grice SJ, Liu JL (2011) Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila. PLoS Genet 7(4):e1002030. doi:10.1371/journal.pgen.1002030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hammond SM, Gogliotti RG, Rao V, Beauvais A, Kothary R, DiDonato CJ (2010) Mouse survival motor neuron alleles that mimic SMN2 splicing and are inducible rescue embryonic lethality early in development but not late. PLoS ONE 5(12):e15887. doi:10.1371/journal.pone.0015887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harris VK, Coticchia CM, Kagan BL, Ahmad S, Wellstein A, Riegel AT (2000) Induction of the angiogenic modulator fibroblast growth factor-binding protein by epidermal growth factor is mediated through both MEK/ERK and p38 signal transduction pathways. J Biol Chem 275(15):10802–10811

    Article  CAS  PubMed  Google Scholar 

  • Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24(1):66–70

    Article  CAS  PubMed  Google Scholar 

  • Jimenez E, Montiel M (2005) Activation of MAP kinase by muscarinic cholinergic receptors induces cell proliferation and protein synthesis in human breast cancer cells. J Cell Physiol 204(2):678–686. doi:10.1002/jcp.20326

    Article  CAS  PubMed  Google Scholar 

  • Kopp JL, Ormsbee BD, Desler M, Rizzino A (2008) Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 26(4):903–911. doi:10.1634/stemcells.2007-0951

    Article  CAS  PubMed  Google Scholar 

  • Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H, Nakatsuji N, Tada T (2005) Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 25(6):2475–2485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KH (1999) Application and investigation of cloning technology in mammalian. Project Report: National Science and Technology Program for Agriculture Technology, vol 3

  • Lee L, Davies SE, Liu JL (2009) The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway. Dev Biol 332(1):142–155

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16(3):265–269

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23(2):215–221

    Article  PubMed  Google Scholar 

  • Li Z, Theus MH, Wei L (2006) Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev Growth Differ 48(8):513–523

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905. doi:10.1126/science.1237905

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu JL, Gall JG (2007) U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc Natl Acad Sci USA 104(28):11655–11659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu JL, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall JG (2006) The Drosophila melanogaster Cajal body. J Cell Biol 172(6):875–884. doi:10.1083/jcb.200511038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu JL, Wu Z, Nizami Z, Deryusheva S, Rajendra TK, Beumer KJ, Gao H, Matera AG, Carroll D, Gall JG (2009) Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol Cell 20(6):1661–1670. doi:10.1091/mbc.E08-05-0525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38(4):431–440

    Article  CAS  PubMed  Google Scholar 

  • Lorson CL, Rindt H, Shababi M (2010) Spinal muscular atrophy: mechanisms and therapeutic strategies. Hum Mol Genet 19(R1):R111–R118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu CW, Yabuuchi A, Chen L, Viswanathan S, Kim K, Daley GQ (2008) Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nat Genet 40(7):921–926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20(2):665–671

    CAS  PubMed  Google Scholar 

  • Monani UR, Coovert DD, Burghes AH (2000) Animal models of spinal muscular atrophy. Hum Mol Genet 9(16):2451–2457

    Article  CAS  PubMed  Google Scholar 

  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90(18):8424–8428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H (1990) A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60(3):461–472

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski J, Kraft AS (2000) Bax-induced apoptotic cell death. Proc Natl Acad Sci USA 97(2):529–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95(5):615–624

    Article  CAS  PubMed  Google Scholar 

  • Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298(5599):1775–1779. doi:10.1126/science.1074962

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Zhen S, Roumiantsev S, McDonald LT, Yuan GC, Orkin SH (2010) Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol 30(22):5364–5380. doi:10.1128/MCB.00419-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280(26):24731–24737

    Article  CAS  PubMed  Google Scholar 

  • Schrank B, Gotz R, Gunnersen JM, Ure JM, Toyka KV, Smith AG, Sendtner M (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA 94(18):9920–9925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scotland KB, Chen S, Sylvester R, Gudas LJ (2009) Analysis of Rex1 (zfp42) function in embryonic stem cell differentiation. Dev Dyn 238(8):1863–1877. doi:10.1002/dvdy.22037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shafey D, MacKenzie AE, Kothary R (2008) Neurodevelopmental abnormalities in neurosphere-derived neural stem cells from SMN-depleted mice. J Neurosci Res 86(13):2839–2847. doi:10.1002/jnr.21743

    Article  CAS  PubMed  Google Scholar 

  • Sleigh JN, Gillingwater TH, Talbot K (2011) The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis Model Mech 4(4):457–467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soler-Botija C, Ferrer I, Gich I, Baiget M, Tizzano EF (2002) Neuronal death is enhanced and begins during foetal development in type I spinal muscular atrophy spinal cord. Brain 125(Pt 7):1624–1634

    Article  PubMed  Google Scholar 

  • Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20(4):327–348. doi:10.1007/s11065-010-9148-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132(9):2093–2102

    Article  CAS  PubMed  Google Scholar 

  • Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128(4):747–762

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Trulzsch B, Garnett C, Davies K, Wood M (2007) Knockdown of SMN by RNA interference induces apoptosis in differentiated P19 neural stem cells. Brain Res 1183:1–9

    Article  PubMed  Google Scholar 

  • van Bergeijk J, Rydel-Konecke K, Grothe C, Claus P (2007) The spinal muscular atrophy gene product regulates neurite outgrowth: importance of the C terminus. FASEB J 21(7):1492–1502

    Article  PubMed  Google Scholar 

  • Wang J, Li Z, Zhang Y, Liu X, Chen L, Chen Y (2013) CX43 change in LPS preconditioning against apoptosis of mesenchymal stem cells induced by hypoxia and serum deprivation is associated with ERK signaling pathway. Mol Cell Biochem 380(1–2):267–275. doi:10.1007/s11010-013-1683-x

    Article  CAS  PubMed  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110(3):385–397

    Article  CAS  PubMed  Google Scholar 

  • Wirth B, Brichta L, Schrank B, Lochmuller H, Blick S, Baasner A, Heller R (2006) Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet 119(4):422–428. doi:10.1007/s00439-006-0156-7

    Article  CAS  PubMed  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    Article  CAS  PubMed  Google Scholar 

  • Yu HB, Kunarso G, Hong FH, Stanton LW (2009) Zfp206, Oct4, and Sox2 are integrated components of a transcriptional regulatory network in embryonic stem cells. J Biol Chem 284(45):31327–31335. doi:10.1074/jbc.M109.016162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan H, Corbi N, Basilico C, Dailey L (1995) Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9(21):2635–2645

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, Robson P, Lim B (2006) Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8(10):1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Andrianakos R, Yang Y, Liu C, Lu W (2010) Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem 285(12):9180–9189. doi:10.1074/jbc.M109.077958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kun-Hsiung Lee for providing the trophectoderm stem cells. We also thank Joint Center for Instruments and Researches, College of Bioresources and Agriculture in National Taiwan University for sharing the laser-scanning confocal microscopy facility and providing analysis for flow cytometry. The shRNAs were generated and obtained from the National RNAi Core Facility in the Institute of Molecular Biology, Genomic Research Center, Academia Sinica. We are grateful to Andrew Bassett, Ruben Cauchi, Kay Davies, Stuart Grice, Hung-Fu Liao, Shau-Ping Lin, Todd Nystul, Chris Ponting, Priscilla Goldby and James Sleigh for their comments on this manuscript. This study was supported by the National Science Council, Taiwan, ROC (Grant Number 97-2313-B-002-006-MY3 and NSC 100-2313-B-002-051-MY2) to LYS and UK Medical Research Council to JLL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Long Liu or Li-Ying Sung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, WF., Xu, J., Chang, CC. et al. SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Struct Funct 220, 1539–1553 (2015). https://doi.org/10.1007/s00429-014-0743-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0743-7

Keywords

Navigation