Skip to main content

Advertisement

Log in

Treadmill training regulates β-catenin signaling through phosphorylation of GSK-3β in lumbar vertebrae of ovariectomized rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Postmenopausal osteoporosis is associated with high level of adipogenesis within the bone marrow at the expense of osteoblast population. The mechanical effect on β-catenin through phosphorylation of glycogen synthase kinase-3β (GSK-3β) is critical for inhibition of adipogenesis in mesenchymal stem cells in vitro. In present study, we hypothesized that treadmill training could regulate the β-catenin signaling through phosphorylation of GSK-3β in the lumbar vertebrae of ovariectomized (OVX) rats. 3-month-old female Sprague–Dawley rats were divided randomly into the following four groups: (a) Sham, (b) OVX, (c) OVX exercised (EX), and (d) OVX estrogen replacement (E2). At the end of the experiment, the serum levels of estradiol (E2) and luteinizing hormone (LH), the ultimate lumbar vertebra strength, as well as the protein expression for peroxisome proliferators-activated receptor γ (PPARγ), β-catenin, P-GSK-3β, and osterix (Osx) in lumbar vertebrae were analyzed. Moreover, the protein expression for β-catenin and P-GSK-3β were also examined in the uterus. The EX group had lower protein level of PPARγ, higher ultimate lumbar vertebral strength, and higher protein levels of β-catenin, and P-GSK-3β in lumbar vertebral bodies compared with sedentary OVX group. The effects of EX treatment on the protein levels of β-catenin and P-GSK-3β in bones were not reproducible in the uterus. Moreover, exercise treatment produced no estrogenic effect as evidenced by serum level of LH. In conclusion, this study suggested that treadmill training could activate the GSK-3β/β-catenin signaling and inhibit the production of PPARγ in lumbar vertebrae of OVX rats, which may contribute to the prevention of bone loss in OVX rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113(6):846–855

    PubMed  CAS  Google Scholar 

  • Armstrong VJ, Muzylak M, Sunters A, Zaman G, Saxon LK, Price JS, Lanyon LE (2007) Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem 282(28):20715–20727

    Article  PubMed  CAS  Google Scholar 

  • Bonewald LF, Johnson Ml (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615

    Article  PubMed  CAS  Google Scholar 

  • Case N, Ma M, Sen B, Xie Z, Gross TS, Rubin J (2008) Beta-catenin levels influence rapid mechanical responses in osteoblasts. J Biol Chem 283(43):29196–29205

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Wang S, Bu S, Wang Y, Duan Y, Yang S (2011) Treadmill training prevents bone loss by inhibition of PPARγ expression but not promoting of Runx2 expression in ovariectomized rats. Eur J Appl Physiol 111(8):1759–1767

    Article  PubMed  CAS  Google Scholar 

  • David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A (2007) Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148(5):2553–2562

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J (2006) Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol 207(2):454–460

    Article  PubMed  CAS  Google Scholar 

  • Fan D, Chen Z, Wang D, Guo Z, Qiang Q, Shang Y (2007) Osterix is a key target for mechanical signals in human thoracic ligament flavum cells. J Cell Physiol 211(3):577–584

    Article  PubMed  CAS  Google Scholar 

  • Hao L, Wang Y, Duan Y, Bu S (2010) Effects of treadmill exercise training on liver fat accumulation and estrogen receptor alpha expression in intact and ovariectomized rats with or without estrogen replacement treatment. Eur J Appl Physiol 109(5):879–886

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL, Frolik CA, Engler T, Wei T, Kriauciunas A, Martin TJ, Sato M, Bryant HU, Ma YL (2006) Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 21(6):910–920

    Article  PubMed  CAS  Google Scholar 

  • Kurabayashi T, Tomita M, Matsushita H, Honda A, Takakuwa K, Tanaka K (2001) Effects of a beta 3 adrenergic receptor agonist on bone and bone marrow adipocytes in the tibia and lumbar spine of the ovariectomized rats. Calcif Tissue Int 68(4):248–254

    Article  PubMed  CAS  Google Scholar 

  • Lau E, Lee WD, Li J, Xiao A, Davies JE, Wu Q, Wang L, You L (2011) Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells. J Orthop Res 29(7):1075–1080. doi:10.1002/jor.21334

    Article  PubMed  CAS  Google Scholar 

  • Liedert A, Wagner L, Seefried L, Ebert R, Jakob F, Ignatius A (2010) Estrogen receptor and Wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem Biophys Res Commun 394(3):755–759

    Article  PubMed  CAS  Google Scholar 

  • McNeilly AS, Crawford JL, Taragnat C, Nicol L, McNeilly JR (2003) The differential secretion of FSH and LH: regulation through genes, feedback and packaging. Reprod Suppl 61:463–476

    PubMed  CAS  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29

    Article  PubMed  CAS  Google Scholar 

  • Narayana Murthy PS, Sengupta S, Sharma S, Singh MM (2006) Effect of ormeloxifene on ovariectomy-induced bone resorption, osteoclast differentiation and apoptosis and TGF beta-3 expression. J Steroid Biochem Mol Biol 100(4–5):117–128

    Article  PubMed  CAS  Google Scholar 

  • Pigozzi F, Rizzo M, Giombini A, Parisi A, Fagnani F, Borrione P (2009) Bone mineral density and sport: effect of physical activity. J Sports Med Phys Fitness 49(2):177–183

    PubMed  CAS  Google Scholar 

  • Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115(12):3318–3325

    Article  PubMed  CAS  Google Scholar 

  • Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL, Hill AA, Akhter MP, Johnson ML, Recker RR, Komm BS, Bex FJ (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281(42):31720–31728

    Article  PubMed  CAS  Google Scholar 

  • Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19(2):109–124

    Article  PubMed  CAS  Google Scholar 

  • Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA (2000) Inhibition of adipogenesis by Wnt signaling. Science 289(5481):950–953

    Article  PubMed  CAS  Google Scholar 

  • Schmitt NM, Schmitt J, Dören M (2009) The role of physical activity in the prevention of osteoporosis in postmenopausal women-An update. Maturitas 63(1):34–38

    Article  PubMed  Google Scholar 

  • Seidlova-Wuttke D, Christel D, Kapur P, Nguyen BT, Jarry H, Wuttke W (2010) Beta-ecdysone has bone protective but not estrogenic effects in ovariectomized rats. Physitomedicine 17(11):884–889

    Article  CAS  Google Scholar 

  • Sen B, Xie Z, Case N, Ma M, Rubin CT, Rubin J (2008) Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149(12):6065–6075

    Article  PubMed  CAS  Google Scholar 

  • Sen B, Styner M, Xie Z, Case N, Rubin CT, Rubin J (2009) Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J Biol Chem 284(50):34607–34617

    Article  PubMed  CAS  Google Scholar 

  • Sewerynek E (2011) Current indications for prevention and therapy of steroid-iduced osteoporosis in men and women. Endokrynol Pol 62(1):38–44

    PubMed  Google Scholar 

  • Siddiqui JA, Swarnkar G, Sharan K, Chakravarti B, Sharma G, Rawat P, Kumar M, Khan FM, Pierroz D, Maurya R, Chattopadhyay N (2010) 8,8’’-Biapigeninyl stimulates osteoblast functions and inhibits osteoclast and adipocyte functions: osteoprotective action of 8,8’’-biapigeninyl in ovariectomized mice. Mol Cell Endocrinol 323(2):256–267

    Article  PubMed  CAS  Google Scholar 

  • Simões PA, Zamarioli A, Blóes P, Mazzocato FC, Pereira LH, Volpon JB, Shimano AC (2008) Effect of treadmill exercise on lumbar vertebrae in ovariectomized rats: anthropometrical and mechanical analyses. Acta Bioeng Biomech 10(2):39–41

    PubMed  Google Scholar 

  • Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3–5):225–230

    Article  PubMed  CAS  Google Scholar 

  • Simpson ER, Davis SR (2001) Minireview: aromatase and the regulation of estrogen biosynthesis–some new perspectives. Endocrinology 142(11):4589–4594

    Article  PubMed  CAS  Google Scholar 

  • Sipos W, Pietschmann P, Rauner M, Kerschan-Schindl K, Patsch J (2009) Pathophysiology of osteoporosis. Wien Med Wochenschr 159(9–10):230–234

    Article  PubMed  Google Scholar 

  • Syed FA, Oursler MJ, Hefferanm TE, Peterson JM, Riggs BL, Khosla S (2008) Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int 19(9):1323–1330

    Article  PubMed  CAS  Google Scholar 

  • Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5(8):442–447

    Article  PubMed  CAS  Google Scholar 

  • Viccica G, Francucci CM, Marcocci C (2010) The role of PPARγ for the osteoblastic differentiation. J Endocrinol Invest 33(7 Suppl):9–12

    PubMed  CAS  Google Scholar 

  • Wang L, Wang YD, Wang WJ, Li DJ (2009) Differential regulation of dehydroepiandrosterone and estrogen on bone and uterus in ovariectomized mice. Osteoporosis Int 20:79–92

    Article  Google Scholar 

  • Wang Y, van der Zee M, Fodde R, Blok LJ (2010) Wnt/Β-catenin and sex hormone signaling in endometrial homeostasis and cancer. Oncotarget 1(7):674–684

    PubMed  Google Scholar 

  • Zhao H, Tian Z, Hao J, Chen B (2005) Extragonadal aromatization increases with time after ovariectomy in rats. Reprod Biol Endocrinol 3:6

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Scientific Foundation of China (Grant No. 30771046) and the Beijing Candidate of Millions of Talents Project in the New Century.

Conflict of interest

No conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumin Bu.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, S., Chen, Y., Wang, S. et al. Treadmill training regulates β-catenin signaling through phosphorylation of GSK-3β in lumbar vertebrae of ovariectomized rats. Eur J Appl Physiol 112, 3295–3304 (2012). https://doi.org/10.1007/s00421-011-2306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2306-4

Keywords

Navigation