Skip to main content
Log in

Isaac Newton’s ‘Of Quadrature by Ordinates’

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

In Of Quadrature by Ordinates (1695), Isaac Newton tried two methods for obtaining the Newton–Cotes formulae. The first method is extrapolation and the second one is the method of undetermined coefficients using the quadrature of monomials. The first method provides \(n\)-ordinate Newton–Cotes formulae only for cases in which \(n=3,4\) and 5. However this method provides another important formulae if the ratios of errors are corrected. It is proved that the second method is correct and provides the Newton–Cotes formulae. Present significance of each of the methods is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Newton did not translate the first sentence into Latin.

  2. Cas. 1. Si dentur duæ tantū ordinatæ \(\textit{AK}, \textit{BL}\) fac aream

    $$\begin{aligned} \textit{AKLB}=\frac{\textit{AK}+\textit{BL}}{2}\textit{AB} \end{aligned}$$

       Cas. 2. Si dentur tres \(\textit{AK},\textit{BL}, \textit{CM}\), dic \(\displaystyle \frac{\textit{AK}+\textit{CM}}{2}\textit{AC}=\square \, \textit{AM},\) et rursus \(\displaystyle \frac{\textit{AK}+\textit{BL}}{4}+\frac{\textit{BL}+\textit{CM}}{4}\) in \(\textit{AC}=\textit{AK}+2\textit{BL}+\textit{CM}\) in \(\frac{1}{4}\textit{AC}=\square \,\textit{AM}\) (per Cas. 1) et errorem solutionis prioris esse ad errorem solutionis posterioris ut \(\textit{AC}^{q}\) ad \(\textit{AB}^{q}\) seu 4 ad 1 adeoque solutionum differentiam \(\displaystyle \frac{\textit{AK}-2\textit{BL}+\textit{CM}}{4}\textit{AC}\) esse ad errorem posterioris ut 3 ad 1, et error posterioris erit \(\displaystyle \frac{\textit{AK}-2\textit{BL}+\textit{CM}}{12}\textit{AC}.\) Aufer hunc errorem et solutio posterior evadet

    $$\begin{aligned} \frac{\textit{AK}+4\textit{BL}+\textit{CM}}{6}\textit{AC}=\square \, \textit{AM}.\,\text{ Solutio } \ \mathrm{qu{\ae }sita.} \end{aligned}$$
  3. Cas. 3. Si dentur 4 Ordinatæ AK, BL, CM, DN: dic \( \frac{\textit{AK}+\textit{DN}}{2}\textit{AD}=\square \,\textit{AN}.\) Item \( \frac{\textit{AK}+\textit{BL}}{6}+\frac{\textit{BL}+\textit{CM}}{6}+\frac{\textit{CM}+\textit{DN}}{6}\) in \(\textit{AD}\) (id est \( \frac{\textit{AK}+2\textit{BL}+2\textit{CM}+\textit{DN}}{6}\textit{AD})=\square \,\textit{AN}.\) Et solutionū errores erunt ut \(\textit{AD}^{q}\) ad \(\textit{AB}^{q}\) seu 9 ad 1 adeoque errorum differentia (quæ est solutionū differentia \(\frac{2\textit{AK}-2\textit{BL}-2\textit{CM}+2\textit{DN}}{8}\textit{AD}\)) erit ad errorem posterioris ut 8 ad 1. Aufer hunc errorem et posterior manebit

    $$\begin{aligned} \frac{\textit{AK}+3\textit{BL}+3\textit{CM}+\textit{DN}}{8}AD=\square \, AN. \end{aligned}$$
  4. Cas. 4. Si dentur 5 Ordinatæ, dic (per Cas.2)

    $$\begin{aligned} \frac{\textit{AK}+4\textit{CM}+\textit{EO}}{6}\textit{AE}=\square \,\textit{AO}. \end{aligned}$$

    Item \(\displaystyle \frac{\textit{AK}+4\textit{BL}+\textit{CM}}{12}+\frac{\textit{CM}+4\textit{DN}+\textit{EO}}{12}\) in \(\textit{AE}=\square \,\textit{AO}\) et errores esse ut \(\textit{AE}^{q}\) ad \(\textit{AB}^{q}\) seu 16 ad 1\({}_{[,]}\) et cum errorum differentia sit

    $$\begin{aligned} \frac{\textit{AK}-4\textit{BL}+6\textit{CM}-4\textit{DN}+\textit{EO}}{12}\textit{AE} \end{aligned}$$

    error minoris erit \(\displaystyle \frac{\textit{AK}-4\textit{BL}+6\textit{CM}-4\textit{DN}+\textit{EO}}{180}\textit{AE}\) quem aufer et manebit

    $$\begin{aligned} \frac{7\textit{AK}+32\textit{BL}+12\textit{CM}+32\textit{DN}+7\textit{EO}}{90}\textit{AE}=\square \,\textit{AO}. \end{aligned}$$
  5. Cas. 5. Eodem modo si dentur 7 Ordinatæ, fiet

    $$\begin{aligned} \frac{17\textit{AK}+54\textit{BL}+51\textit{CM}+36\textit{DN}+51\textit{EO}+54\textit{FP}+17\textit{GQ}}{280}\textit{AG}=\square \,\textit{AQ}. \end{aligned}$$
  6. Cas. 6. Et si dentur 9, fiet

    $$\begin{aligned}&217\textit{AK}+1024\textit{BL}+352\textit{CM}+1024\textit{DN}+436\textit{EO}\\&\frac{\qquad \qquad +1024\textit{FP}+352\textit{GQ}+1024\textit{HR}+217\textit{IS}}{5670}\textit{AI}=\square \,\textit{AS}. \end{aligned}$$
  7. Hæ sunt quadraturæ Parabolæ quæ per terminos Ordinatarum omniū transit.

  8. Investigantur etiam hæ quadraturæ in hunc modum. Sit \(a\) summa Ordinatæ primæ et ultimæ, \(b\) summa secundæ et penultimæ\({}_{[,]}\) \(c\) tertiæ & antepenultimæ\({}_{[,]}\) \(d\) summa 4\({}^{\text{ tae }}\) a principio et quartæ a fine\({}_{[,]}\) [\(e\)] summa quintæ a principio et quintæ a fine &c\({}_{[,]}\) \(m\) Ordinata media et Abscissa \(A\) et sit

    $$\begin{aligned} \frac{za+yb+xc+vd+te+sm}{2z+2y+2x+2v+2t+s}A=\square ^{\ae } \mathrm{qu{\ae }sit{\ae },} \end{aligned}$$

    et pro ordinatis primo scribantur termini totidem primi hujus seriei numerorū quadratorum 0.1.4, 9.16.25 &c\({}_{[,]}\) dein termini totidem primi hujus cubicorum 0.1.8.27.64.125 &c\({}_{[,]}\) dein totidem hujus quadrato-quadraticorū 0.1.16.81.256.&c pergendo (si opus est) ad tot series una dempta quot sunt incognitæ quantitates \(z, y, x, v\) &c, et pro quadratura quæsita scribe quadraturam Parabolæ cui hæ ordinatæ congruunt. Et provenient æquationes ex quibus collatis determinabuntur \(z, y, x\) &c.

  9. Ut si Ordinatæ sint quatuor, pono \( a=0+9\ { \& }\ b=1+4. A=3\) et quadraturam\(=9\). Sic fit \(\small \frac{9z+5y}{2z+2y}\times 3=9.\) et inde \(y=3z\). Igitur pro \(y\) scribo \(3z\) et æquatio \(\small \frac{za+yb}{2z+2y}A=\square \) fit \(\displaystyle \tfrac{a+3b}{8}A=\square .\) ut in casu tertio.

  10. Rursus si ordinatæ sint quinque pono \(a=0+16, b=1+9, c=4. A=4, \square =\frac{64}{3}.\) Et sic fit \(\small \frac{16z+10y+4s}{2z+2y+s}\times 4=\frac{64}{3}\) seu \(8z=y+2s.\) Rursus pono

    $$\begin{aligned} a=0+64, b=1+27, c=8,A=4 \text{ et } \square =64. \end{aligned}$$

    et sic fit \(\small \frac{64z+28y+8s}{2z+2y+s}\times 4=64.\) seu \(8z=y+2s\) ut supra. Pono igitur [\(a=0+256, b=1+81, c=16, A=4\) et \(\small \square =\frac{1024}{5}.\) Et sic fit

    $$\begin{aligned} \frac{256z+82y+16s}{2z+2y+s}\times 4=\frac{1024}{5} \end{aligned}$$

    seu \(384z-88s=51y=408z-102s,\) hoc est \(14s=24z\) sive \(7s=12z\) adeoque \(7y=32z.\) Igitur pro \(s\) et \(y\) scribo \(\frac{12}{7}z\) et \(\frac{32}{7}z\) respective et æquatio

    $$\begin{aligned} \frac{za+yb+sm}{2z+2y+s}A=\square \text{ fit } \frac{7a+32b+12m}{90}[A]=\square \end{aligned}$$

    ut in casu quarto.]

References

  • Cajori, Florian. 1947. Sir Isaac Newton’s Mathematical Principles: Of Natural Philosophy and his system of the world. Berkeley: University of California Press.

    Google Scholar 

  • Davis, Philip, and Rabinowitz, Philip. 1984. Methods of numerical integration, 2nd ed. Orlando: Academic Press.

  • Fraser, Duncan C. 1927. Newton’s Interpolation Formulas. London: Reprinted in Bibliolife.

    Google Scholar 

  • Gregory, James. 1668. Exercitationes geometricae. http://books.google.co.uk/.

  • Huygens, Christian. 1654. De Circuli Magnitudine Inventa. Lugd. Batavia. http://books.google.com/.

  • Milne, R.M. 1903. Extension of Huygens’ approximation to a circle arc. Mathematical Gazette 2: 309–311.

    Article  MathSciNet  MATH  Google Scholar 

  • Milne-Thomson, L.M. 1933. The calculus of finite differences. New York: Macmillan.

    Google Scholar 

  • Newton, Isaac. 1744. Methodus Differentialis 1711. In Isaaci Newtoni, Equitis Aurati, Opuscula Mathematica, philosophica et philologica, Collegit partímque Latinè vertit ac recensuit Joh, Castillioneus Jurisconsultus. Lausannæ & Geneva: Apud Marcum-Michaelem Bousquet.

  • Osada, Naoki. 2012. The early history of convergence acceleration methods. Numerical Algorithms 60: 205–221. doi:10.1007/s11075-012-9539-0.

    Article  MathSciNet  MATH  Google Scholar 

  • Ralston, Anthony, and Rabinowitz, Philip. 1978. A first course in numerical analysis, 2nd ed. New York: McGraw-Hill.

  • Romberg, Werner. 1955. Vereinfachte numerishe Integration. Det Kongelige Norske Videnskabers Selskabs Forhandlinger, Bind 28: 30–36.

    MathSciNet  MATH  Google Scholar 

  • Rudio, Ferdinand. 1892. Archimedes, Huygens, Lambert, Legendre. Teubner: Vier Abhandlungen Über die Kreismessung.

    MATH  Google Scholar 

  • Sheppard, W.F. 1900. Some quadrature formulae. Proc. London Math. Soc. 32: 258–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Turnbull, Herbert Westren. 1959. The correspondences of Isaac Newton, vol. 1. Cambridge: Cambridge University Press.

    Google Scholar 

  • Turnbull, Herbert Westren. 1960. The correspondences of Isaac Newton, vol. 2. Cambridge: Cambridge University Press.

    Google Scholar 

  • Whiteside, Derek T. 1961. Patterns of mathematical thought in the later seventeenth century. Archive Hist. Exact Sci. 1: 179–388.

    Article  MathSciNet  MATH  Google Scholar 

  • Whiteside, Derek T. 1971. The Mathematical Papers of Isaac Newton, vol. IV. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Whiteside, Derek T. 1976. The Mathematical Papers of Isaac Newton, vol. VII. Cambridge: Cambridge University Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Osada.

Additional information

Communicated by : Niccolò Guicciardini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osada, N. Isaac Newton’s ‘Of Quadrature by Ordinates’. Arch. Hist. Exact Sci. 67, 457–476 (2013). https://doi.org/10.1007/s00407-013-0117-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-013-0117-1

Keywords

Navigation