Skip to main content
Log in

A Golub-Welsch version for simultaneous Gaussian quadrature

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The zeros of type II multiple orthogonal polynomials can be used for quadrature formulas that approximate r integrals of the same function f with respect to r measures \(\mu _1,\ldots ,\mu _r\) in the spirit of Gaussian quadrature. This was first suggested by Borges (Numer. Math. 67, 271–288 1994), even though he does not mention multiple orthogonality. We give a method to compute the quadrature nodes and the quadrature weights which extends the Golub-Welsch approach using the eigenvalues and left and right eigenvectors of a banded Hessenberg matrix. This method was already described by Coussement and Van Assche (J. Comput. Appl. Math. 178, 131–145 2005) but it seems to have gone unnoticed. We describe the result in detail for \(r=2\) and give some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 2

Similar content being viewed by others

Data availability

All the data are numerical results published in the paper. The algorithms are also in the paper.

References

  1. Alqahtani, H., Reichel, L.: Multiple orthogonal polynomials applied to matrix function evaluation. BIT Numer. Math. 58(4), 835–849 (2018)

    Article  MathSciNet  Google Scholar 

  2. Angelesco, A.: Sur deux extensions des fractions continues algébriques. C. R. Acad. Sci. Paris 168, 262–265 (1919)

    Google Scholar 

  3. Ben Cheikh, Y., Douak, K.: On two-orthogonal polynomials related to the Bateman \(j_{n}^{u, v}\)- function. Methods Appl. Anal. 7, 641–662 (2000)

  4. Borges, C.F.: On a class of Gauss-like quadrature rules. Numer. Math. 67, 271–288 (1994)

    Article  MathSciNet  Google Scholar 

  5. Coussement, E., Van Assche, W.: Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind. Constr. Approx. 19, 237–263 (2003)

    Article  MathSciNet  Google Scholar 

  6. Coussement, J., Van Assche, W.: Gaussian quadrature for multiple orthogonal polynomials. J. Comput. Appl. Math. 178, 131–145 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. Daems, E., Kuijlaars, A.B.J.: A Christoffel-Darboux formula for multiple orthogonal polynomials. J. Approx. Theory 130(2), 190–202 (2004)

    Article  MathSciNet  Google Scholar 

  8. Douak, K.: On 2-orthogonal polynomials of Laguerre type. Internat. J. Math. Math. Sci. 22(1), 29–48 (1999)

    Article  MathSciNet  Google Scholar 

  9. Fidalgo Prieto, U., López Lagomasino, G.: Nikishin systems are perfect. Constr. Approx. 34(3), 297–356 (2011)

    Article  MathSciNet  Google Scholar 

  10. Filipuk, G., Haneczok, M., Van Assche, W.: Computing recurrence coefficients of multiple orthogonal polynomials. Numer. Algorithm. 70, 519–543 (2015)

    Article  MathSciNet  Google Scholar 

  11. Gautschi, W., Milovanović, G.V.: Orthogonal polynomials relative to weight functions of Prudnikov type. Numer. Algorithm. 90(1), 263–270 (2022)

  12. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comp. 23, 221–230 (1969)

    Article  MathSciNet  Google Scholar 

  13. Gonchar, A.A., Rakhmanov, E.: On the convergence of simultaneous Padé approximants for systems of functions of Markov type, (Russian). Trudy Mat. Inst. Steklov. 157, 31–48 (1981)

    MathSciNet  Google Scholar 

  14. Hermite, C.: Sur la fonction exponentielle. C.R. Acad. Sci. Paris 77 (1873), 18–24; 74–79; 226–233; 285–293

  15. Jovanović, A.N., Stanić, M.P., Tomović, T.V.: Construction of the optimal set of quadrature rules in the sense of Borges. Electron. Trans. Numer. Anal. (ETNA) 50, 164–181 (2018)

  16. Laudadio, T., Mastronardi, N., Van Dooren, P.: Computational aspects of simultaneous Gaussian quadrature, manuscript

  17. Lima, H.: Bidiagonal matrix factorizations associated with symmetric multiple orthogonal polynomials and lattice paths. arXiv:2308.03561

  18. Lubinsky, D.S., Van Assche, W.: Simultaneous Gaussian quadrature for Angelesco systems. Jaén J. Approx. 8(2), 113–149 (2016)

    MathSciNet  Google Scholar 

  19. Mahler, K.: Perfect systems. Compositio Math. 19, 95–166 (1968)

    MathSciNet  Google Scholar 

  20. Milovanović, G.V., Stanić, M.: Construction of multiple orthogonal polynomials by discretized Stieltjes-Gautschi procedure and corresponding Gaussian quadratures. Facta Univ. Ser. Math. Inform. 18, 9–29 (2003)

  21. Nikishin, E.M.: A system of Markov functions (Russian). Vestn. Mosk. Univ., Ser. I (1979) no. 4, 60–63; translation in Mosc. Univ. Math. Bull. 34 , no. 4, 63–66 (1979)

  22. Padé, H.: Sur la répresentation approchée d’une fonction par des fractions rationelles. Thesis Ann. École Nor. 9(3), 1–93 (1892)

    Google Scholar 

  23. Tomović, T.V., Stanić, M.P.: Construction of the optimal set of two or three quadrature rules in the sense of Borges. Numer. Algorithm 78(4), 1087–1109 (2018)

  24. Van Assche, W.: Nearest neighbor recurrence relations for multiple orthogonal polynomials. J. Approx. Theory 163(10), 1427–1448 (2011)

    Article  MathSciNet  Google Scholar 

  25. Van Assche, W., Coussement, E.: Some classical multiple orthogonal polynomials. Numerical Analysis 2000, Vol. V, Quadrature and Orthogonal Polynomials. J. Comput. Appl. Math. 127(1–2), 317–347 (2001)

  26. Van Assche, W., Geronimo, J.S., Kuijlaars, A.B.J.: Riemann-Hilbert problems for multiple orthogonal polynomials. In: Bustoz, J., et al. (eds.)‘Special Functions 2000: Current Perspectives and Future Directions’ , NATO Science Series II. Mathematics, Physics and Chemistry 30, pp. 23–59. Kluwer, Dordrecht (2001)

  27. Van Assche, W., Vuerinckx, A.: Multiple Hermite polynomials and simultaneous Gaussian quadrature. Electron. Trans. Numer. Anal. 50, 182–198 (2018)

    Article  MathSciNet  Google Scholar 

  28. Van Assche, W., Yakubovich, S.B.: Multiple orthogonal polynomials associated with Macdonald functions. Integral Transform. Spec. Funct. 9(3), 229–244 (2000)

    Article  MathSciNet  Google Scholar 

  29. Van Dooren, P., Laudadio, T., Mastronardi, N.: Computing the eigenvectors of nonsymmetric tridiagonal matrices. Comput. Math. Math. Phys. 61(5), 733–749 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to the referees for useful comments and additional references.

Funding

Supported by research project G0C9819N of FWO (Research Foundation – Flanders).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by WVA and the numerical work was also done by WVA.

Corresponding author

Correspondence to Walter Van Assche.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Assche, W. A Golub-Welsch version for simultaneous Gaussian quadrature. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01767-2

Keywords

Mathematics Subject Classification (2010)

Navigation