Skip to main content
Log in

Honeybees can discriminate between Monet and Picasso paintings

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Honeybees (Apis mellifera) have remarkable visual learning and discrimination abilities that extend beyond learning simple colours, shapes or patterns. They can discriminate landscape scenes, types of flowers, and even human faces. This suggests that in spite of their small brain, honeybees have a highly developed capacity for processing complex visual information, comparable in many respects to vertebrates. Here, we investigated whether this capacity extends to complex images that humans distinguish on the basis of artistic style: Impressionist paintings by Monet and Cubist paintings by Picasso. We show that honeybees learned to simultaneously discriminate between five different Monet and Picasso paintings, and that they do not rely on luminance, colour, or spatial frequency information for discrimination. When presented with novel paintings of the same style, the bees even demonstrated some ability to generalize. This suggests that honeybees are able to discriminate Monet paintings from Picasso ones by extracting and learning the characteristic visual information inherent in each painting style. Our study further suggests that discrimination of artistic styles is not a higher cognitive function that is unique to humans, but simply due to the capacity of animals—from insects to humans—to extract and categorize the visual characteristics of complex images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdi H, Valentin D, Edelman B, O’Toole AJ (1995) More about the difference between men and women: evidence from linear neural networks and the principal component approach. Percept 24:539–562

    Article  CAS  Google Scholar 

  • Avarguès-Weber A, Portelli G, Benard J, Dyer AG, Giurfa M (2010) Configural processing enables discrimination and categorization of face-like stimuli in honeybees. J Exp Biol 213:593–601

    Article  PubMed  Google Scholar 

  • Avarguès-Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Annu Rev Entomol 56:423–443

    Article  PubMed  Google Scholar 

  • Avarguès-Weber A, Dyer AG, Combe M, Giurfa M (2012) Simultaneous mastering of two abstract concepts by the miniature brain of bees. PNAS 109:7481–7486

    Article  PubMed  Google Scholar 

  • Benard J, Stach S, Giurfa M (2006) Categorization of visual stimuli in the honeybee Apis mellifera. Anim Cogn 9:257–270

    Article  PubMed  Google Scholar 

  • Burton AM, Bruce V, Hancock PJB (1999) From pixels to people: a model of familiar face recognition. Cogn Sci 23:1–31

    Article  Google Scholar 

  • Chittka L, Walker J (2006) Do bees like Van Gogh’s sunflowers? Optics Laser Technol 38:323–328

    Article  Google Scholar 

  • Chittka L, Walker J (2007) Insects as art lovers: bees for Van Gogh. Antennae 2:37–42

    Google Scholar 

  • Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388

    Article  PubMed  CAS  Google Scholar 

  • Collett TS (1996) Insect navigation en route to the goal—multiple strategies for the use of landmarks. J Exp Biol 199:227–235

    Article  PubMed  Google Scholar 

  • Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3:542–552

    Article  PubMed  CAS  Google Scholar 

  • Collett TS, Graham P, Durier V (2003) Route learning by insects. Curr Opin Neurobiol 13:718–725

    Article  PubMed  CAS  Google Scholar 

  • Dyer AG (2012) The mysterious cognitive abilities of bees: why models of visual processing need to consider experience and individual differences in animal performance. J Exp Biol 215:387–395

    Article  PubMed  Google Scholar 

  • Dyer AG, Griffiths DW (2012) Seeing near and seeing far: behavioural evidence for dual mechanisms of pattern vision in the honeybee (Apis mellifera). J Exp Biol 215:397–404

    Article  PubMed  Google Scholar 

  • Dyer AG, Vuong QC (2008) Insect brains use image interpolation mechanisms to recognise rotated objects. PLoS ONE 3:e4086

    Article  PubMed  Google Scholar 

  • Dyer AG, Neumeyer C, Chittka L (2005) Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. J Exp Biol 208:4709–4714

    Article  PubMed  Google Scholar 

  • Dyer AG, Rosa MGP, Reser DH (2008) Honeybees can recognise images of complex natural scenes for use as potential landmarks. J Exp Biol 211:1180–1186

    Article  PubMed  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801–824

    Article  Google Scholar 

  • Giurfa M, Lehrer M (2001) Honeybee vision and floral displays: from detection to close-up recognition. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 61–82

    Chapter  Google Scholar 

  • Giurfa M, Zhang SW, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410:930–933

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Schubert M, Reisenman C, Gerber B, Lachnit H (2003) The effect of cumulative experience on the use of elemental and configural visual discrimination strategies in honeybees. Behav Brain Res 145:161–169

    Article  PubMed  Google Scholar 

  • Gordon R, Forge A (1983) Monet. Abrams, New York

    Google Scholar 

  • Gould JL (1985) How bees remember flower shapes. Science 227:1492–1494

    Article  PubMed  CAS  Google Scholar 

  • Gould JL (1986) Pattern learning by honeybees. Anim Behav 34:990–997

    Article  Google Scholar 

  • Gross HJ, Pahl M, Si A, Zhu H, Tautz J, Zhang SW (2009) Number-based visual generalisation in the honeybee. PLoS ONE 4:e4263

    Article  PubMed  Google Scholar 

  • Horridge A (2000) Seven experiments on pattern vision of the honeybee, with a model. Vision Res 40:2589–2603

    Article  PubMed  CAS  Google Scholar 

  • Horridge A (2005) What the honeybee sees: a review of the recognition system of Apis mellifera. Physiol Entomol 30:2–13

    Article  Google Scholar 

  • Horridge A (2007) The preferences of the honeybee (Apis mellifera) for different visual cues during the learning process. J Insect Physiol 53:877–889

    Article  PubMed  CAS  Google Scholar 

  • Horridge A (2009a) Generalization in visual recognition by the honeybee (Apis mellifera): a review and explanation. J Insect Physiol 55:499–511

    Article  PubMed  CAS  Google Scholar 

  • Horridge A (2009b) What does an insect see? J Exp Biol 212:2721–2729

    Article  PubMed  Google Scholar 

  • Lehrer M, Campan R (2005) Generalization of convex shapes by bees: what are shapes made of? J Exp Biol 208:3233–3247

    Article  PubMed  Google Scholar 

  • O’Toole AJ, Abdi H, Deffenbacher K, Valentin D (1993) Low-dimensional representation of faces in higher dimensions of face space. J Opt Soc Am 10:405–411

    Article  Google Scholar 

  • Poggi C (1992) In defiance of painting: cubism, futurism and the invention of collage. Yale University Press, New Haven Connecticut

    Google Scholar 

  • Reinhard J, Srinivasan MV, Zhang SW (2006) Complex memories in honeybees: can there be more than two? J Comp Physiol A 192:409–416

    Article  Google Scholar 

  • Rubin WS (1989) Picasso and Braque: pioneering cubism. Museum of Modern Art, New York

    Google Scholar 

  • Srinivasan MV (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55:184–267

    Article  Google Scholar 

  • Srinivasan MV, Zhang SW, Zhu H (1998) Honeybees link sights to smells. Nature 396:637–638

    Article  CAS  Google Scholar 

  • Stach S, Giurfa M (2005) The influence of training length on generalization of visual feature assemblies in honeybees. Behav Brain Res 161:8–17

    Article  PubMed  Google Scholar 

  • Stach S, Benard J, Giurfa M (2004) Local-feature assembling in visual pattern recognition and generalization in honeybees. Nature 429:758–761

    Article  PubMed  CAS  Google Scholar 

  • Steffan-Dewenter I, Kuhn A (2003) Honeybee foraging in differentially structured landscapes. Proc R Soc Lond B 270:569–575

    Article  Google Scholar 

  • Stuckey CF (1995) Claude Monet 1840–1926. Thames and Hudson, New York

    Google Scholar 

  • Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3:71–86

    Article  Google Scholar 

  • von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jb Physiol 37:1–238

    Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Belknap Press, Cambridge

    Google Scholar 

  • Watanabe S (2001) Van Gogh, Chagall and pigeons: picture discrimination in pigeons and humans. Anim Cogn 4:147–151

    Article  Google Scholar 

  • Watanabe S, Sakamoto J, Wakita M (1995) Pigeon’s discrimination of paintings by Monet and Picasso. J Exp Anal Beh 63:165–174

    Article  CAS  Google Scholar 

  • Wehner R (1971) The generalization of directional visual stimuli in the honey bee, Apis mellifera. J Insect Physiol 7:1579–1591

    Article  Google Scholar 

  • Zentall T, Wasserman EA, Lazareva OF, Thompson R, Ratterman MJ (2008) Concept learning in animals. Comp Cogn Behav Rev 3:13–45

    Google Scholar 

  • Zhang SW, Srinivasan MV (2004) Exploration of cognitive capacity in honeybees: higher functions emerge from a small brain. In: Prete FR (ed) Complex worlds from simpler nervous systems. MIT Press, Cambridge, pp 41–74

    Google Scholar 

  • Zhang SW, Srinivasan MV, Collett TS (1995) Convergent processing in honeybee vision: multiple channels for the recognition of shape. PNAS 92:3029–3031

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Srinivasan MV, Zhu H, Wong J (2004) Grouping of visual objects by honeybees. J Exp Biol 207:3289–3298

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chin Y. J. Yuen for help with the experiments, and Adrian Dyer and Allen Cheung for advice on the image analyses. W.W. was funded through an Australian Postgraduate Award by the Australian Government and an Australian Research Council Discovery grant to JT (DP0985830). A.M.M. was funded by a FAPESP doctorate scholarship (08/50576-8), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Reinhard.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Moreno, A.M., Tangen, J.M. et al. Honeybees can discriminate between Monet and Picasso paintings. J Comp Physiol A 199, 45–55 (2013). https://doi.org/10.1007/s00359-012-0767-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0767-5

Keywords:

Navigation