Skip to main content
Log in

Comparative Psychophysics of Colour Preferences and Colour Learning in Bees with Special Focus on Asian Social Bees

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Several interesting facets of bee behaviour have fascinated the human mind since historical times. Prominent amongst them is their interaction with flowers, symbolising the mutualistic nature of this relationship. In their search for flowers, bees are known to fly far from a central place—the nest or the hive—and employ multiple sensory systems, in which visual cues, especially colour plays a critical role. A lot of what we know about the visual ecology of bees, comes from just two out of more than 20,000 bee species worldwide—the Western honeybee Apis mellifera and the buff-tailed bumblebee, Bombus terrestris. The tropics abound in bee diversity, yet woefully little is known about the behaviour and sensory ecology of tropical bees. Here, we summarise over a decade of our work on the colour preferences, colour learning and detection thresholds for colour stimuli in tropical Asian honeybees and stingless bee species. More such studies on the sensory ecology of tropical bees are essential to understand how floral traits, of which colour is salient, influences bee–flower interactions and how these interactions shaped the structure of tropical plant–pollinator networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (HS), upon reasonable request.

References

  1. Avarguès-Weber A, Mota T (2016) Advances and limitations of visual conditioning protocols in harnessed bees. J Physiol 110:107–118. https://doi.org/10.1016/j.jphysparis.2016.12.006

    Article  Google Scholar 

  2. Backhaus W (1991) Colour opponent coding in the visual system of the honeybee. Vision Res 31:1381–1397. https://doi.org/10.1016/0042-6989(91)90059-E

    Article  CAS  Google Scholar 

  3. Balamurali GS, Krishna S, Somanathan H (2015) Senses and signals: Evolution of floral signals, pollinator sensory systems and the structure of plant-pollinator interactions. Curr Sci 108:1852–1861

    Google Scholar 

  4. Balamurali GS, Somanathan H, Hempel de Ibarra N (2015) Motion cues improve the performance of harnessed bees in a colour learning task. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 201:505–511. https://doi.org/10.1007/s00359-015-0994-7

    Article  CAS  Google Scholar 

  5. Balamurali GS, Nicholls E, Somanathan H, Hempel de Ibarra N (2018) A comparative analysis of colour preferences in temperate and tropical social bees. Sci Nat. https://doi.org/10.1007/s00114-017-1531-z

    Article  Google Scholar 

  6. Balamurali GS, Rose S, Somanathan H, Kodandaramaiah U (2020) Complex multi-modal sensory integration and context specificity in colour preferences of a pierid butterfly. J Exp Biol. https://doi.org/10.1242/jeb.223271

    Article  Google Scholar 

  7. Bischoff M, Lord JM, Robertson AW, Dyer AG (2013) Hymenopteran pollinators as agents of selection on flower colour in the New Zealand mountains: Salient chromatic signals enhance flower discrimination. New Zeal J Bot 51:181–193. https://doi.org/10.1080/0028825X.2013.806933

    Article  Google Scholar 

  8. Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psych 97:107–119

    Article  CAS  Google Scholar 

  9. Brandt R, Vorobyev M (1997) Metric analysis of increment threshold spectral sensitivity in the honeybee. Vision Res 37:425–439

    Article  CAS  Google Scholar 

  10. Briscoe AD, Chittka L (2001) The Evolution of color vision in insects. Annu Rev Entomol 46:471–510. https://doi.org/10.1146/annurev.ento.46.1.471

    Article  CAS  Google Scholar 

  11. Chittka L (1992) The color hexagon: a chromaticity diagram based on photoreceptor excitations as a general representation of colour opponency. J Comp Physiol A 170:533–543

    Article  Google Scholar 

  12. Chittka L, Menzel R (1992) The evolutionary adaptation of flower colours and the insect pollinators’ colour vision. J Comp Physiol A 171:171–181

    Article  Google Scholar 

  13. Chittka L, Vorobyev M, Shmida A, et al (1993) Bee colour vision: the optimal system for the discrimination of flower colours with three spectral photoreceptor types. Sens Syst arthropods 211–218

  14. Clarke D, Whitney H, Sutton GP, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science. https://doi.org/10.1126/science.1230883

    Article  Google Scholar 

  15. Dacke M, Srinivasan MV (2008) Evidence for counting in insects. Anim Cogn 11:683–689. https://doi.org/10.1007/s10071-008-0159-y

    Article  Google Scholar 

  16. Dyer FC (1985) Nocturnal orientation by the Asian honey bee, Apis dorsata. Anim Behav 33:769–774

    Article  Google Scholar 

  17. Dyer AG, Spaethe J, Prack S (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 194:617–627. https://doi.org/10.1007/s00359-008-0335-1

    Article  Google Scholar 

  18. Dyer AG, Boyd-Gerny S, Mcloughlin S et al (2012) Parallel evolution of angiosperm colour signals: Common evolutionary pressures linked to hymenopteran vision. Proc R Soc B Biol Sci 279:3606–3615. https://doi.org/10.1098/rspb.2012.0827

    Article  Google Scholar 

  19. Dyer AG, Boyd-Gerny S, Shrestha M et al (2016) Innate colour preferences of the Australian native stingless bee Tetragonula carbonaria Sm. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 202:603–613. https://doi.org/10.1007/s00359-016-1101-4

    Article  Google Scholar 

  20. Dyer AG, Streinzer M, Garcia J (2016) Flower detection and acuity of the Australian native stingless bee Tetragonula carbonaria Sm. J Comp Physiol A Neuroethol Sensory Neural, Behav Physiol 202:629–639. https://doi.org/10.1007/s00359-016-1107-y

    Article  CAS  Google Scholar 

  21. Gerber B, Smith BH (1998) Visual modulation of olfactory learning in honeybees. J Exp Biol 201:2213–2217

    Article  CAS  Google Scholar 

  22. Gervasi DDL, Schiestl FP (2017) Real-time divergent evolution in plants driven by pollinators. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms14691

    Article  Google Scholar 

  23. Giurfa M, Nunez J, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 177:247–259. https://doi.org/10.1016/j.pbi.2004.05.010

    Article  Google Scholar 

  24. Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709. https://doi.org/10.1007/BF00227381

    Article  Google Scholar 

  25. Giurfa M, Sandoz JC (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19:54–66

    Article  Google Scholar 

  26. Goyret J, Markwell PM, Raguso RA (2008) Context- and scale-dependent effects of floral CO2 on nectar foraging by Manduca sexta. Proc Natl Acad Sci USA 105(12):4565–4570. https://doi.org/10.1073/pnas.0708629105

    Article  Google Scholar 

  27. Greggers U, Menzel R (1993) Memory dynamics and foraging strategies of honeybees. Behav Ecol Sociobiol 32:17–29. https://doi.org/10.1007/BF00172219

    Article  Google Scholar 

  28. Gumbert A (2000) Color choices by bumble bees (Bombus terrestris): Innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43. https://doi.org/10.1007/s002650000213

    Article  Google Scholar 

  29. Harrap MJM, de Ibarra NH, Knowles HD et al (2021) Bumblebees can detect floral humidity. J Exp Biol. https://doi.org/10.1242/jeb.240861

    Article  Google Scholar 

  30. Harrap MJM, Rands SA, de Ibarra NH, Whitney HM (2017) The diversity of floral temperature patterns, and their use by pollinators. Elife 6:1–18. https://doi.org/10.7554/eLife.31262

    Article  Google Scholar 

  31. Hempel de Ibarra N, Vorobyev M, Menzel R (2014) Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 200:411–433. https://doi.org/10.1007/s00359-014-0915-1

    Article  CAS  Google Scholar 

  32. Hempel de Ibarra N, Langridge KV, Vorobyev M (2015) More than colour attraction: behavioural functions of flower patterns. Curr Opin Insect Sci. 12:64–70. https://doi.org/10.1016/j.cois.2015.09.005

    Article  Google Scholar 

  33. Hori S, Takeuchi H, Arikawa K et al (2006) Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 192:691–700. https://doi.org/10.1007/s00359-005-0091-4

    Article  Google Scholar 

  34. Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2018) Numerical ordering of zero in honey bees. Science 360:1124–1126. https://doi.org/10.1126/science.aar4975

    Article  CAS  Google Scholar 

  35. Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2019) Numerical cognition in honeybees enables addition and subtraction. Sci Adv. https://doi.org/10.1126/sciadv.aav0961

    Article  Google Scholar 

  36. Jezeera MA, Tichit P, Balamurali GS et al (2022) Spatial resolution and sensitivity of the eyes of the stingless bee, Tetragonula iridipennis. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 208:225–238. https://doi.org/10.1007/s00359-021-01521-2

    Article  Google Scholar 

  37. Kapustjanskij A, Streinzer M, Paulus HF, Spaethe J (2007) Bigger is better: Implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees. Funct Ecol 21:1130–1136. https://doi.org/10.1111/j.1365-2435.2007.01329.x

    Article  Google Scholar 

  38. Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision - Behavioural tests and physiological concepts. Biol Rev Camb Philos Soc 78:81–118. https://doi.org/10.1017/S1464793102005985

    Article  Google Scholar 

  39. Kelber A, Somanathan H (2019) Spatial vision and visually guided behavior in apidae. Insects 10:1–17. https://doi.org/10.3390/insects10120418

    Article  Google Scholar 

  40. Koethe S, Bossems J, Dyer AG, Lunau K (2016) Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 202:615–627. https://doi.org/10.1007/s00359-016-1115-y

    Article  Google Scholar 

  41. Koethe S, Banysch S, Alves-Dos-Santos I, Lunau K (2018) Spectral purity, intensity and dominant wavelength: disparate colour preferences of two Brazilian stingless bee species. PLoS ONE 13:1–13. https://doi.org/10.1371/journal.pone.0204663

    Article  CAS  Google Scholar 

  42. Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav Ecol 12:447–456

    Article  Google Scholar 

  43. Kuwabara M (1957) Instructions for use Bildung des bedingten Reflexes von Pavlovs Typus Bedingter Reflex auf Wasserdampf Die Flugbienen wurden an dem in der Nähe des Stockes angebrachten. J Fac Hokkaido Uni Serc VI Zool 13:458–464

    Google Scholar 

  44. Leonard AS, Masek P (2014) Multisensory integration of colors and scents: Insights from bees and flowers. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 200:463–474. https://doi.org/10.1007/s00359-014-0904-4

    Article  CAS  Google Scholar 

  45. Lichtenstein L, Brockmann A, Spaethe J (2019) Learning of monochromatic stimuli in Apis cerana and Apis mellifera by means of PER conditioning. J Insect Physiol 114:30–34. https://doi.org/10.1016/j.jinsphys.2019.02.006

    Article  CAS  Google Scholar 

  46. Meena A, Kumar AMV, Balamurali GS, Somanathan H (2021) Visual detection thresholds in the Asian honeybee, Apis cerana. J Comp Physiol A 207:553–560. https://doi.org/10.1007/s00359-021-01496-0

    Article  Google Scholar 

  47. Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z Vergl Physiol 56(1):22–62

    Article  Google Scholar 

  48. Menzel R, Shmida A (1993) The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol Rev 68(1):81–120

    Article  Google Scholar 

  49. Mota T, Giurfa M, Sandoz JC (2011) Color modulates olfactory learning in honeybees by an occasion-setting mechanism. Learn Mem 18:144–155. https://doi.org/10.1101/lm.2073511

    Article  Google Scholar 

  50. Muth F, Papaj DR, Leonard AS (2016) Bees remember flowers for more than one reason: Pollen mediates associative learning. Anim Behav 111:93–100. https://doi.org/10.1016/j.anbehav.2015.09.029

    Article  Google Scholar 

  51. Neumeyer C (1981) Chromatic adaptation in the honeybee: Successive color contrast and color constancy. J Comp Physiol A 144:543–553

    Article  Google Scholar 

  52. Nicholls E, de Ibarra NH (2014) Bees associate colour cues with differences in pollen rewards. J Exp Biol 217:2783–2788. https://doi.org/10.1242/jeb.106120

    Article  Google Scholar 

  53. Peitsch D, Fietz A, Hertel H et al (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40. https://doi.org/10.1007/BF00190398

    Article  CAS  Google Scholar 

  54. Qin QH, He XJ, Tian LQ et al (2012) Comparison of learning and memory of Apis cerana and Apis mellifera. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 198:777–786. https://doi.org/10.1007/s00359-012-0747-9

    Article  Google Scholar 

  55. Raguso RA (2004) Flowers as sensory billboards: Progress towards an integrated understanding of floral advertisement. Curr Opin Plant Biol 7:434–440. https://doi.org/10.1016/j.pbi.2004.05.010

    Article  Google Scholar 

  56. Raine NE, Chittka L (2007) The adaptive significance of sensory bias in a foraging context: Floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE 2:1–8. https://doi.org/10.1371/journal.pone.0000556

    Article  Google Scholar 

  57. Renoult JP, Kelber A, Schaefer HM (2017) Colour spaces in ecology and evolutionary biology. Biol Rev 92:292–315. https://doi.org/10.1111/brv.12230

    Article  Google Scholar 

  58. Schiestl FP, Johnson SD (2013) Pollinator-mediated evolution of floral signals. Trends Ecol Evol 28:307–315. https://doi.org/10.1016/j.tree.2013.01.019

    Article  Google Scholar 

  59. Shrestha M, Dyer AG, Bhattarai P, Burd M (2014) Flower colour and phylogeny along an altitudinal gradient in the Himalayas of Nepal. J Ecol 102:126–135. https://doi.org/10.1111/1365-2745.12185

    Article  Google Scholar 

  60. Shrestha M, Burd M, Garcia JE et al (2019) Colour evolution within orchids depends on whether the pollinator is a bee or a fly. Plant Biol 21:745–752. https://doi.org/10.1111/plb.12968

    Article  CAS  Google Scholar 

  61. Shrestha M, Dyer AG, Garcia JE, Burd M (2019) Floral colour structure in two Australian herbaceous communities: it depends on who is looking. Ann Bot 124:221–232. https://doi.org/10.1093/aob/mcz043

    Article  Google Scholar 

  62. Somanathan H, Borges RM, Warrant EJ, Kelber A (2008) Nocturnal bees learn landmark colours in starlight. Curr Biol. https://doi.org/10.1016/j.cub.2008.08.023

    Article  Google Scholar 

  63. Somanathan H, Warrant EJ, Borges RM et al (2009) Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata. J Exp Biol 212:2448–2453. https://doi.org/10.1242/jeb.031484

    Article  Google Scholar 

  64. Somanathan H, Saryan P, Balamurali GS (2019) Foraging strategies and physiological adaptations in large carpenter bees. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 205:387–398. https://doi.org/10.1007/s00359-019-01323-7

    Article  Google Scholar 

  65. Somanathan H, Krishna S, Jos EM et al (2020) Nocturnal bees feed on diurnal leftovers and pay the price of day – night lifestyle transition. Front Ecol Evol 8:1–11. https://doi.org/10.3389/fevo.2020.566964

    Article  Google Scholar 

  66. Spaethe J, Chittka L (2003) Inter individual variation of eye optics and single object resolution in bumblebees. J Exp Biol. https://doi.org/10.1242/jeb.00570

    Article  Google Scholar 

  67. Spaethe J, Streinzer M, Eckert J, May S, Dyer AG (2014) Behavioural evidence of colour vision in free flying stingless bees. J Comp Physiol A 200:485–496. https://doi.org/10.1007/s00359-014-0886-2

    Article  CAS  Google Scholar 

  68. Srinivasan MV (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55:267–284. https://doi.org/10.1146/annurev.ento.010908.164537

    Article  CAS  Google Scholar 

  69. Streinzer M, Brockmann A, Nagaraja N, Spaethe J (2013) Sex and caste-specific variation in compound eye morphology of five honeybee species. PLoS ONE 8:1–9. https://doi.org/10.1371/journal.pone.0057702

    Article  CAS  Google Scholar 

  70. Thom C, Guerenstein PG, Mechaber WL, Hildebrand JG (2004) Floral Co2 reveals flower profitability to moths. J Chem Ecol 30(7):1477. https://doi.org/10.1023/B:JOEC.0000037887.33885.c0

    Article  CAS  Google Scholar 

  71. von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  72. Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc B Biol Sci 265:351–358. https://doi.org/10.1098/rspb.1998.0302

    Article  CAS  Google Scholar 

  73. Waddington KD, Gottlieb N (1990) Actual vs perceived profitability: a study of floral choice of honey bees. J Insect Behav 3:429–441

    Article  Google Scholar 

  74. Wang Z, Tan K (2014) Comparative analysis of olfactory learning of Apis cerana and Apis mellifera. Apidologie 45:45–52. https://doi.org/10.1007/s13592-013-0228-3

    Article  Google Scholar 

  75. Wang Z, Qu Y, Dong S et al (2016) Honey bees modulate their olfactory learning in the presence of hornet predators and alarm component. PLoS ONE. https://doi.org/10.1371/journal.pone.0150399

    Article  Google Scholar 

  76. Wertlen AM, Niggebrügge C, Vorobyev M, Hempel De Ibarra N (2008) Detection of patches of coloured discs by bees. J Exp Biol 211:2101–2104. https://doi.org/10.1242/jeb.014571

    Article  Google Scholar 

  77. Whitney HM, Kolle M, Andrew P et al (2009) Floral Iridescence produced by diffractive optics acts as a cue for animal pollinators. Science. https://doi.org/10.1126/science.1166256

    Article  Google Scholar 

  78. Wyszecki G, Stiles WS (1982) Color Science – Concepts and Methods, Quantitative Data and Formulae, 2nd edn. Wiley, New York

    Google Scholar 

  79. Young AM, Kodabalagi S, Brockmann A, Dyer FC (2021) A hard day’s night: Patterns in the diurnal and nocturnal foraging behavior of Apis dorsata across lunar cycles and seasons. PLoS ONE 16:1–22. https://doi.org/10.1371/journal.pone.0258604

    Article  CAS  Google Scholar 

  80. Zhang S, Srinivasan MV, Zhu H, Wong J (2004) Grouping of visual objects by honeybees. J Exp Biol 207:3289–3298. https://doi.org/10.1242/jeb.01155

    Article  Google Scholar 

  81. Zhang LZ, Zhang SW, Wang ZL et al (2014) Cross-modal interaction between visual and olfactory learning in Apis cerana. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 200:899–909. https://doi.org/10.1007/s00359-014-0934-y

    Article  Google Scholar 

  82. Zhang LZ, Yan WY, Wang ZL et al (2015) Differential protein expression analysis following olfactory learning in Apis cerana. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 201:1053–1061. https://doi.org/10.1007/s00359-015-1042-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. R. Gadagkar for the invitation to contribute to the special issue, and for the encouragement to write in informal style about our work on Indian bees. We thank several lab members past and present (Shivani, Asmi, Sajesh, Sudeep) for interesting discussions over the years which have given shape to our work. We thank Natalie Hempel de Ibarra, Almut Kelber and Eric Warrant for collaborations with BeeLab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Somanathan.

Ethics declarations

Conflict of interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somanathan, H., Balamurali, G.S. Comparative Psychophysics of Colour Preferences and Colour Learning in Bees with Special Focus on Asian Social Bees. J Indian Inst Sci 103, 971–980 (2023). https://doi.org/10.1007/s41745-023-00386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-023-00386-5

Keywords

Navigation