Skip to main content
Log in

Reduction of noise and bias in randomly sampled power spectra

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We consider the origin of noise and distortion in power spectral estimates of randomly sampled data, specifically velocity data measured with a burst-mode laser Doppler anemometer. The analysis guides us to new ways of reducing noise and removing spectral bias, e.g., distortions caused by modifications of the ideal Poisson sample rate caused by dead time effects and correlations between velocity and sample rate. The noise and dead time effects for finite records are shown to tend to previous results for infinite time records and ensemble averages. For finite records, we show that the measured sampling function can be used to correct the spectra for noise and dead time effects by a deconvolution process. We also describe a novel version of a power spectral estimator based on a fast slotted autocovariance algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adrian RJ, Yao CS (1987) Power spectra of fluid velocities measured by laser Doppler velocimetry. Exp Fluids 5:17

    Google Scholar 

  • Albrecht HE, Borys M, Damaschke N, Tropea C (2003) Laser Doppler and phase Doppler measurement techniques. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Benak M, Sturm M, Tropea CD, Nobach H, Fuchs W, Müller E et al (1993) Correlation estimator for two point laser Doppler anemometry. Proceedings of the SPIE. Int Soc Opt Eng 2052:613–621

    Google Scholar 

  • Benedict LH, Nobach H, Tropea C (2000) Estimation of turbulent velocity spectra from laser Doppler data. Meas Sci Technol 11:1089–1104

    Article  Google Scholar 

  • Blackman RB and Tukey JW (1958) The measurement of power spectra from the point of view of communication engineering. Dover Publications

  • Buchhave P, George WK, Lumley JL (1979) The measurement of turbulence with the laser-Doppler anemometer. Ann Rev Fluid Mech 11:443–504

    Article  Google Scholar 

  • Buchhave P, Velte CM, George WK (2014) The effect of dead time on randomly sampled power spectral estimates. Exp Fluids 55:1680. doi:10.1007/s00348-014-1680-1

    Article  Google Scholar 

  • Durst F, Melling A, Whitelaw JH (1976) Principles and practice of laser Doppler anemometry. Academic Press, London

    Google Scholar 

  • Frontera F, Fuligni F (1978) The effect of dead time on the power spectral density estimates of discrete time series. Nucl Instrum Methods 157:557–561

    Article  Google Scholar 

  • Gaster M, Roberts JB (1975) Spectral analysis of randomly sampled signals. J Inst Math Appl 15:195–216

    Article  MATH  Google Scholar 

  • Gaster M, Roberts JB (1977) The spectral analysis of randomly sampled records by a direct transform. Proc R Soc A 354:27–58

    Article  MathSciNet  Google Scholar 

  • George WK, Beuther PD and Lumley JL (1978). Processing of random signals. Proceedings of the dynamic flow conference, Skovlunde, Denmark, pp 757–800

  • Masry E (1978) Alias-free sampling: an alternative conceptualization and its applications. IEEE Trans Inf Theory 1:24

    Google Scholar 

  • Mayo WT Jr, Shay MT, Ritter S (1974) The development of new digital data processing techniques for turbulence measurements with a laser velocimeter. USAF AEDC report no. AEDC-TR-74-53

  • Moreau S, Plantier G, Valière J-C, Simon L, Bailliet H (2011) Estimation of power spectral density from laser Doppler data via linear interpolation and deconvolution. Exp Fluids 50:179–188

    Article  Google Scholar 

  • Nobach H (2002) Local time estimation for the slotted correlation function of randomly sampled LDA data. Exp Fluids 32:337–345

    Article  Google Scholar 

  • Nobach H, Müller E, Tropea C (1998) Correlation estimator for two-channel, non-coincidence laser-Doppler-anemometer. In: Proceedings 9th international symposium on appl of Laser Tech to Fluid Mech, Lisbon, paper 32.1

  • Roberts JB, Gaster M (1980) On the estimation of spectra from randomly sampled signals: a method of reducing variability. Proc R Soc A 371:235–258

    Article  MathSciNet  Google Scholar 

  • Roberts JB, Downie J, Gaster M (1980) Spectral analysis of signals from a laser Doppler anemometer operating in the burst mode. J Phys E Sci Instrum 13:977

    Article  Google Scholar 

  • Shapiro HS, Silverman RA (1960) Alias-free sampling of random noise. J Soc Ind Appl Math 8:225–248

    Article  MATH  MathSciNet  Google Scholar 

  • Simon L, Fitzpatrick J (2004) An improved sample-and-hold reconstruction procedure for estimation of power spectra from LDA data. Exp Fluids 37:272–280

    Article  Google Scholar 

  • Tropea C (1995) Laser Doppler anemometry: recent developments and future challenges. Meas Sci Technol 6:605–619

    Article  Google Scholar 

  • Tummers MJ, Passchier DM (1996) Spectral estimation using a variable window and the slotting technique with local normalization. Meas Sci Technol 7:1541–1546

    Article  Google Scholar 

  • van Maanen HRE, Nobach H, Benedict LH (1999) Improved estimator for the slotted autocorrelation function of randomly sampled LDA data. Meas Sci Technol 10(1):L4–L7

    Article  Google Scholar 

  • Velte CM, George WK, Buchhave P (2014a) Estimation of burst-mode LDA power spectra. Exp Fluids 55:1674. doi:10.1007/s00348-014-1674-z

    Article  Google Scholar 

  • Velte CM, Buchhave P, George WK (2014b) Dead time effects in laser Doppler anemometry measurements. Exp Fluids 55:1836

    Article  Google Scholar 

  • Zhang W, Jahoda K, Swank JH, Morgan EH, Giles AB (1995) Dead-time modifications to fast Fourier transform power spectra. Astrophys J 449:930–935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preben Buchhave.

Appendix 1: Variance

Appendix 1: Variance

The variance of the measured PS is defined as

$$ \text{var} \left\{ {S_{0} \left( f \right)} \right\} = \left\langle {\hat{S}_{0} \left( f \right)^{2} } \right\rangle - \left\langle {\hat{S}_{0} \left( f \right)} \right\rangle^{2} \equiv I - II, $$
(46)

where subscripts 0 stands for “measured with a record length T g ” and the circumflex (hat) indicates estimate from a single record. In the following, we distinguish between a time average parameter T used to compute the true spectrum of the continuous velocity and the actual record length T g determined by the measured samples, see Fig. 13.

Fig. 13
figure 13

True velocity u(t) and a measurement with record length T g made by sampling function g(t)

Let us look first at the second term above, II.

1.1 Second term (square of the mean)

We understand \( \hat{S}_{0} \left( f \right) \) as an estimate of the PS based on a finite record of length T g , see Fig. 13. We then get, using the direct method and the expression for the noise function PS derived above:

$$ \hat{S}_{0} \left( f \right) = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\tilde{u}_{0}^{{{\prime } }} \left( f \right)^{ * } \tilde{u}_{0}^{{{\prime } }} \left( f \right) $$
(47)
$$ \quad \quad \quad \;\; = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int\limits_{ - T/2}^{T/2} {{\text{d}}t\int\limits_{ - T/2}^{T/2} {{\text{d}}t^{\prime}{\text{e}}^{{ - i2\pi f{\kern 1pt} \left( {t^{\prime } - t} \right)}} u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime } } \right)} } \otimes \frac{1}{{\nu \bar{N}}}\sum\limits_{{k,k^{\prime } }}^{N} {{\text{e}}^{{ - i2\pi f\tau_{{kk^{\prime } }} }} } $$
(48)

In the limit of T → ∞, the first term is the true spectrum. The convolution with the second term imposes the finite record on the result and generates the discrete version of the estimator:

$$ \hat{S}_{0} \left( f \right) = \frac{1}{{\nu \bar{N}}}\sum\limits_{{k,k^{\prime } }}^{N} {{\text{e}}^{{ - i2\pi f{\kern 1pt} \left( {t_{{k^{\prime } }} - t_{k} } \right)}} u^{\prime } \left( {t_{k} } \right)u^{\prime } \left( {t_{{k^{\prime } }} } \right)} $$
(49)

The ensemble mean of the spectral estimate is then

$$ S_{0} \left( f \right) = S_{{u^{\prime } }} \left( f \right) \otimes \frac{1}{{\nu \bar{N}}}\left\langle {\sum\limits_{{k,k^{\prime } }}^{N} {{\text{e}}^{{ - i2\pi f\tau_{{kk^{\prime } }} }} } } \right\rangle \equiv S_{{u^{\prime } }} \left( f \right) \otimes S_{g} \left( f \right) $$
(50)

where \( \tau_{{kk^{\prime } }} \equiv t_{k} - t_{{k^{\prime } }} \) are the measured delays between the record and a delayed copy.

Then the second term above is

$$ II = \left[ {S_{{u^{\prime}}} \left( f \right) \otimes S_{g} \left( f \right)} \right]^{2} $$
(51)

1.2 First term (mean square)

We understand \( \left\langle {\hat{S}_{0} \left( f \right)^{2} } \right\rangle \) as the ensemble average of the product of two copies of the same measured PS. By taking the Fourier transform of four copies of the same velocity record sampled at tt′, t″, t′′′ spanning the same time interval {−T/2, T/2} where we let T go to infinity, we obtain:

$$ \begin{aligned} \left\langle {\hat{S}_{0} \left( f \right)^{2} } \right\rangle & = \mathop {\lim }\limits_{T \to \infty } \frac{1}{{T^{2} }}\left\langle {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\left[ {{\text{d}}t{\text{d}}t^{\prime } {\text{d}}t^{\prime \prime } {\text{d}}t^{\prime \prime \prime } \;{\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)} \right]}} } \right.} } } } } \right. \\ & \left. {\left. { \quad \cdot \left[ {u^{\prime } \left( t \right)\;\frac{1}{\nu }\sum\limits_{k}^{N} {\delta \left( {t - t_{k} } \right)} \;u^{\prime } \left( {t^{\prime } } \right)\;\frac{1}{\nu }\sum\limits_{k^{\prime }}^{N} {\delta \left({t^{\prime} - t_{{k^{\prime } }} } \right)} \;u^{\prime } \left( {t^{\prime \prime } } \right)\;\frac{1}{\nu }\sum\limits_{{k^{\prime \prime } }}^{N} {\delta \left( {t^{\prime \prime } - t_{{k^{\prime \prime } }} } \right)} \;u^{\prime } \left( {t^{\prime \prime \prime } } \right)\;\frac{1}{\nu }\sum\limits_{{k^{\prime \prime \prime } }}^{N} {\delta \left( {t^{\prime \prime \prime } - t_{{k^{\prime \prime \prime } }} } \right)} \;} \right]} \right]} \right\rangle, \\ \end{aligned} $$
(52)

or rearranging and using independence between velocity and sampling,

$$ \begin{aligned} \left\langle {\hat{S}_{0} \left( f \right)^{2} } \right\rangle & = \mathop {\lim }\limits_{T \to \infty } \frac{1}{{T^{2} }}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\left[ {{\text{d}}t{\text{d}}t^{\prime } {\text{d}}t^{\prime \prime } {\text{d}}t^{\prime \prime \prime } \;{\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)} \right]}} \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime } } \right)u^{\prime } \left( {t^{\prime \prime } } \right)u^{\prime}\left( {t^{\prime \prime \prime } } \right)} \right\rangle } \right.} } } } \\ & \left. { \quad \cdot \frac{1}{{\nu^{4} }}\left\langle {\sum\limits_{{k,k^{\prime } ,k^{\prime \prime } ,k^{\prime \prime \prime } }}^{N} {\delta \left( {t - t_{k} } \right)\delta \left( {t^{\prime } - t_{{k^{\prime } }} } \right)\delta \left( {t^{\prime \prime } - t_{{k^{\prime \prime } }} } \right)\delta \left( {t^{\prime \prime \prime } - t_{{k^{\prime \prime \prime } }} } \right)} } \right\rangle } \right] \\ \end{aligned} $$
(53)

This can be expressed as a convolution of the velocity part and the sampling function part:

$$ \begin{aligned} \left\langle {\hat{S}_{0} \left( f \right)^{2} } \right\rangle & = \mathop {\lim }\limits_{T \to \infty } \frac{1}{{T^{2} }}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{d}}t{\text{d}}t^{\prime } {\text{d}}t^{\prime \prime } {\text{d}}t^{\prime \prime \prime } \;{\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)} \right]}} \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime } } \right)u^{\prime } \left( {t^{\prime \prime } } \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle } } } } \\ & \quad \otimes \mathop {\lim }\limits_{T \to \infty } \frac{1}{{\nu^{2} \bar{N}^{2} }}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{d}}t{\text{d}}t^{\prime } {\text{d}}t^{\prime \prime } {\text{d}}t^{\prime \prime \prime } \;{\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)} \right]}} } } \;} } \left\langle {\sum\limits_{{k,k^{\prime } ,k^{\prime \prime } ,k^{\prime \prime \prime } }}^{N} {\delta \left( {t - t_{k} } \right)\delta \left( {t^{\prime } - t_{{k^{\prime } }} } \right)\delta \left( {t^{\prime \prime } - t_{{k^{\prime \prime } }} } \right)\delta \left( {t^{\prime \prime \prime } - t_{{k^{\prime \prime \prime } }} } \right)} } \right\rangle \\ \end{aligned} $$
(54)

1.3 Velocity part

To proceed with the velocity part, we assume fourth order Gaussian statistics:

$$ \begin{gathered} \mathop {\lim }\limits_{T \to \infty } \frac{1}{{T^{2} }}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{d}}t\,{\text{d}}t^{\prime } {\text{d}}t^{\prime \prime } {\text{d}}t^{\prime \prime \prime } \,{\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)} \right]}} } } } } \hfill \\ \quad \quad \quad \quad \quad \cdot \left[ {\left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime } } \right)} \right\rangle \cdot \left\langle {u^{\prime } \left( {t^{\prime \prime } } \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle + \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime \prime } } \right)} \right\rangle \cdot \left\langle {u^{\prime } \left( {t^{\prime } } \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle + \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle \cdot \left\langle {u^{\prime } \left( {t^{\prime } } \right)u^{\prime } \left( {t^{\prime \prime } } \right)} \right\rangle } \right] \hfill \\ \end{gathered} $$
(55)

1.4 First velocity term in mean square

$$ \boxed1 = \mathop {\lim }\limits_{T \to \infty } \frac{1}{{T^{2} }}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{d}}t\;} } {\text{d}}t^{\prime } \;{\text{d}}t^{\prime \prime } \;{\text{d}}t^{\prime \prime \prime } \;} } {\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)} \right]}} \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime } } \right)} \right\rangle \left\langle {u^{\prime } \left( {t^{\prime \prime } } \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle $$
(56)

Split into product of two integrals

$$ \boxed1 = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{e}}^{{ - i2\pi f\left( {t^{\prime } - t} \right)}} \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime } } \right)} \right\rangle \,{\text{d}}t\,{\text{d}}t^{\prime } \cdot } } \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{e}}^{{ - i2\pi f\left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)}} \left\langle {u^{\prime } \left( {t^{\prime \prime } } \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle \,{\text{d}}t^{\prime \prime } \,{\text{d}}t^{\prime \prime \prime } } } $$
(57)
$$ \boxed1 = S_{{u^{\prime } }} \left( f \right)^{2} $$
(58)

1.5 Second velocity term in mean square

$$ \boxed2 = \mathop {\lim }\limits_{T \to \infty } \frac{1}{{T^{2} }}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{d}}t\;} } {\text{d}}t^{\prime } \;{\text{d}}t^{\prime \prime } \;{\text{d}}t^{\prime \prime \prime } \;} } {\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)} \right]}} \left\langle {u\prime \left( t \right)u^{\prime } \left( {t^{\prime \prime } } \right)} \right\rangle \left\langle {u^{\prime } \left( {t^{\prime } } \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle $$
(59)

Shuffle variable in exponent to match covariance terms:

$$ \boxed2 = \mathop {\lim }\limits_{T \to \infty } \frac{1}{{T^{2} }}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{d}}t\;} } {\text{d}}t^{\prime } \;{\text{d}}t^{\prime \prime } \;{\text{d}}t^{\prime \prime \prime } \;} } {\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime \prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime } } \right) + 2t^{\prime } - 2t^{\prime \prime } } \right]}} \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime \prime } } \right)} \right\rangle \left\langle {u^{\prime } \left( {t^{\prime } } \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle $$
(60)

We then again have a product of two independent integrals, but with additional phase shifts:

$$ \boxed2 = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{e}}^{{ + i4\pi f\,t^{\prime \prime } }} {\text{e}}^{{ - i2\pi f\left( {t^{\prime \prime } - t} \right)}} \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime \prime } } \right)} \right\rangle {\text{d}}t\,{\text{d}}t^{\prime \prime } \cdot } } \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{e}}^{{ + i4\pi ft^{\prime } }} {\text{e}}^{{ - i2\pi f\left( {t^{\prime \prime \prime } - t^{\prime } } \right)}} \left\langle {u^{\prime } \left( {t^{\prime } } \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle {\text{d}}t^{\prime } \,{\text{d}}t^{\prime \prime \prime } } } $$
(61)

Introducing τ″ ≡ t″ − t and τ′′′ ≡ t′′′ − t′, we get

$$ \boxed2 = \mathop {\lim }\limits_{T \to \infty } \int\limits_{0}^{T} {{\text{e}}^{{ + i4\pi f\,t^{\prime \prime } }} {\text{d}}t^{\prime\prime}\int\limits_{0}^{T} {{\text{e}}^{{ - i2\pi f\tau^{\prime \prime } }} C_{{u^{\prime}}} \left( {\tau^{\prime \prime } } \right){\text{d}}\tau^{\prime \prime } \cdot \mathop {\lim }\limits_{T \to \infty } } } \int\limits_{0}^{T} {{\text{e}}^{{^{{ + i4\pi f\,t^{\prime } }} }} {\text{d}}t^{\prime } \int\limits_{0}^{T} {{\text{e}}^{{ - i2\pi f\tau^{\prime \prime \prime } }} C_{{u^{\prime } }} \left( {\tau^{\prime \prime \prime } } \right){\text{d}}\tau^{\prime \prime \prime } } } $$
(62)
$$ \boxed2 = \left[ {\delta \left( f \right) \cdot S_{{u^{\prime } }} \left( f \right)} \right]^{2} = 0 $$
(63)

1.6 Third velocity term in mean square

$$ \boxed3 = \mathop {\lim }\limits_{T \to \infty } \frac{1}{{T^{2} }}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{d}}t\;} } {\text{d}}t^{\prime } \;{\text{d}}t^{\prime \prime } \;{\text{d}}t^{\prime \prime \prime } \;} } {\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)} \right]}} \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle \left\langle {u^{\prime } \left( {t^{\prime } } \right)u^{\prime } \left( {t^{\prime \prime } } \right)} \right\rangle $$
(64)

Shuffle variable in exponent:

$$ \boxed3 = \mathop {\lim }\limits_{T \to \infty } \frac{1}{{T^{2} }}\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{d}}t\;} } {\text{d}}t^{\prime } \;{\text{d}}t^{\prime \prime } \;{\text{d}}t^{\prime \prime \prime } \;} } {\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime \prime \prime } - t} \right) + \left( {t^{\prime } - t^{\prime \prime } } \right)} \right]}} \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime \prime \prime } } \right)} \right\rangle \left\langle {u^{\prime } \left( {t^{\prime } } \right)u^{\prime } \left( {t^{\prime \prime } } \right)} \right\rangle $$
(65)

We then again have a product of two independent integrals:

$$ \boxed3 = S_{{u^{\prime } }} \left( f \right)^{2} $$
(66)

Thus the sum of the three terms becomes

$$ \boxed1 + \boxed2 + \boxed3 = 2S_{{u^{\prime } }} \left( f \right)^{2} $$
(67)

Subtracting the square of the mean, we get for the velocity part of the variance:

$$ \text{var}_{\text{velocity}} \left\{ {S_{0} \left( f \right)} \right\} = S_{{u^{{^{\prime } }} }} \left( f \right)^{2} , $$
(68)

which is the standard expression for the variance of the PS of a stationary random variable.

1.7 Sampling function part

We can now consider the expression for the sampling function:

$$ \frac{1}{{\nu^{2} \bar{N}^{2} }}\mathop {\lim }\limits_{T \to \infty } \int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{d}}t{\text{d}}t^{\prime } {\text{d}}t^{\prime \prime } {\text{d}}t^{\prime \prime \prime } \;{\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)} \right]}} } } \;\;} } \sum\limits_{{k,k^{\prime } ,k^{\prime \prime } ,k^{\prime \prime \prime } }}^{N} {\delta \left( {t - t_{k} } \right)\delta \left( {t^{\prime } - t_{{k^{\prime } }} } \right)\delta \left( {t^{\prime \prime } - t_{{k^{\prime \prime } }} } \right)\delta \left( {t^{\prime \prime \prime } - t_{{k^{\prime \prime \prime } }} } \right)} $$
(69)

Using the delta functions one by one, we simply get:

$$ \frac{1}{{\nu^{2} \bar{N}^{2} }}\sum\limits_{{k,k^{\prime } ,k^{\prime \prime } ,k^{\prime \prime \prime } }}^{N} {{\text{e}}^{{ - i2\pi f\left[ {\left( {t_{{k^{\prime } }} - t_{k} } \right) + \left( {t_{{k^{\prime \prime \prime } }} - t_{{k^{\prime \prime } }} } \right)} \right]}} } $$
(70)

or, defining \( \tau_{{kk^{\prime } }} \equiv t_{{k^{\prime } }} - t_{k} \) and \( \tau_{{k^{\prime\prime}k^{\prime\prime\prime}}} \equiv t_{{k^{\prime\prime\prime}}} - t_{{k^{\prime\prime}}} \),

$$ \frac{1}{{\nu^{2} \bar{N}^{2} }}\sum\limits_{{k,k^{\prime},k^{\prime\prime},k^{\prime\prime\prime}}}^{N} {{\text{e}}^{{ - i2\pi f\left[ {\tau_{{kk^{\prime}}} + \tau_{{k^{\prime\prime}k^{\prime\prime\prime}}} } \right]}} } $$
(71)

We can now see how the sampling function picks out individual velocity samples through the convolution with the exponentials.

Since the samples are uncorrelated (Poisson sampling), we can write

$$ \frac{1}{{\nu^{2} \bar{N}^{2} }}\sum\limits_{{k,k^{\prime } ,k^{\prime \prime } ,k^{\prime \prime \prime } }}^{N} {{\text{e}}^{{ - i2\pi f\left[ {\tau_{{kk^{\prime } }} + \tau_{{k^{\prime \prime } k^{\prime \prime \prime } }} } \right]}} } = \left( {\frac{1}{{\nu \bar{N}}}\sum\limits_{{k,k^{\prime } }}^{N} {{\text{e}}^{{ - i2\pi f\tau_{{kk^{\prime } }} }} } } \right)^{2} $$
(72)

1.8 Final result

Thus, for the total variance

$$ \begin{aligned} \text{var} \left\{ {\hat{S}_{0} \left( f \right)} \right\} & = \mathop {\lim }\limits_{T \to \infty } \int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {\int\limits_{ - T/2}^{T/2} {{\text{d}}t{\text{d}}t^{\prime } {\text{d}}t^{\prime \prime } {\text{d}}t^{\prime \prime \prime } \;{\text{e}}^{{ - i2\pi f\left[ {\left( {t^{\prime } - t} \right) + \left( {t^{\prime \prime \prime } - t^{\prime \prime } } \right)} \right]}} \left\langle {u^{\prime } \left( t \right)u^{\prime } \left( {t^{\prime } } \right)u^{\prime } \left( {t^{\prime \prime } } \right)u^{\prime}\left( {t\prime \prime \prime } \right)} \right\rangle } } } } \\ & \quad \otimes \left\langle {\frac{1}{{\nu \bar{N}}}\sum\limits_{{k,k^{\prime } }}^{N} {{\text{e}}^{{ - i2\pi f\tau_{{kk^{\prime } }} }} } } \right\rangle^{2} \\ \end{aligned} $$
(73)
$$ \quad \quad \quad \quad = \left[ {S_{{u^{\prime}}} \left( f \right) \otimes \left\langle {\frac{1}{{\nu \bar{N}}}\sum\limits_{{k,k^{\prime } }}^{N} {{\text{e}}^{{ - i2\pi f\tau_{{kk^{\prime } }} }} } } \right\rangle } \right]^{2} $$
(74)
$$ \quad \quad \quad \quad = \left[ {\frac{{\overline{{u^{\prime 2} }} }}{\nu } + S_{{u^{\prime } }} \left( f \right) \otimes \left\langle {\frac{1}{{\nu \bar{N}}}\sum\limits_{{k \ne k^{\prime } }}^{N} {{\text{e}}^{{ - i2\pi f\tau_{{kk^{\prime } }} }} } } \right\rangle } \right]^{2} $$
(75)
$$ \quad \quad \quad \quad = \left[ {\frac{{\overline{{u^{\prime 2} }} }}{\nu } + S_{{u^{\prime } }} \left( f \right) \otimes \sin \! \text{c}^{2} \left( {2\pi f{\kern 1pt} T_{g} } \right)} \right]^{2} $$
(76)
$$ \quad \quad \quad \quad = \left( {\frac{{\overline{{u^{\prime 2} }} }}{\nu }} \right)^{2} + 2\frac{{\overline{{u^{\prime 2} }} }}{\nu }S_{{u^{\prime}}} \left( f \right) \otimes \sin \! \text{c}^{2} \left( {2\pi f\,T_{g} } \right) + S_{{u^{\prime } }} \left( f \right)^{2} \otimes \sin \! \text{c}^{4} \left( {2\pi f\,T_{g} } \right) $$
(77)

The convolution with the sinc-squared is just the usual convolution with the frequency window corresponding to a rectangular time window {0, T g }.

For an infinite record, T g  → ∞, we find

$$ \text{var} \left\{ {S_{0} \left( f \right)} \right\} = \left( {\frac{{\overline{{u^{\prime 2} }} }}{\nu }} \right)^{2} + 2\frac{{\overline{{u^{\prime 2} }} }}{\nu }S_{{u^{\prime } }} \left( f \right) + S_{{u^{\prime } }} \left( f \right)^{2} = \left[ {\frac{{\overline{{u^{\prime 2} }} }}{\nu } + S_{{u^{\prime } }} \left( f \right)} \right]^{2} . $$
(78)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchhave, P., Velte, C.M. Reduction of noise and bias in randomly sampled power spectra. Exp Fluids 56, 79 (2015). https://doi.org/10.1007/s00348-015-1922-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1922-x

Keywords

Navigation