Skip to main content
Log in

An improved sample-and-hold reconstruction procedure for estimation of power spectra from LDA data

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Techniques for deriving the auto or power spectrum (PSD) of turbulence from laser Doppler anemometry (LDA) measurements are reviewed briefly. The low pass filter and step noise errors associated with the sample-and-hold process are considered and a discrete version of the low pass filter for the resampled signal is derived. This is then used to develop a procedure by which the PSD estimates obtained from sample and hold measurements can be corrected. The application of the procedures is examined using simulated data and the results show that the frequency range of the analysis can be extended beyond the Nyquist frequency based on the mean sample rate. The results are shown to be comparable to those obtained using the method of Nobach et al. (1998) but the new procedures are more straightforward to implement. The technique is then used to determine the PSD of real LDA data and the results are compared with those from a hot wire anemometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adrian RJ, Yao CS (1987) Power spectra of fluid velocities measured by laser Doppler velocimetry. Exp Fluids 5:17–28

    CAS  Google Scholar 

  • Ajmani DBS, Roberts JD (1990) Improved spectral estimation for irregularly sampled data using digital filters. Mech Syst Signal Pr 4:77–94

    Article  Google Scholar 

  • Banning R (1997) Spectral analysis methods for Poisson sampled measurements. IEEE T Instrum Meas 46(4):882–887

    Article  Google Scholar 

  • Benedict LH, Nobach H, Tropea C (1998) Benchmark tests for the estimation of power spectra from LDA measurements. Proc 9th Int Symp on Appl of Laser Tech to Fluid Mech, Lisbon

  • Beutler FJ (1970) Alias-free randomly timed sampling of stochastic processes. IEEE T Inform Theory 16(2):147–152

    Google Scholar 

  • Boyer L, Searby G (1986) Random sampling: distortion and reconstruction of velocity spectra from fast Fourier-transform analysis of the analog signal of a laser Doppler processor. J Appl Phys 60(8)2699–2707

    Google Scholar 

  • Buchhave P, George WK, Lumley JL (1979) The measurement of turbulence with the laser-Doppler anemometer. Ann Rev Fluid Mech 11:443–503

    Article  Google Scholar 

  • Chao YC, Leu JH (1992) A fractal reconstruction method for LDV spectral analysis. Exp Fluids 13:91–97

    CAS  Google Scholar 

  • Gaster M, Roberts JB (1975) Spectral analysis of randomly sampled signals. J Inst Math Appl 15:195–216

    Google Scholar 

  • Gaster M, Roberts JB (1977) The spectral analysis of randomly sampled records by a direct transform. Proc Roy Soc Lond A Mat 154:27–58

    Google Scholar 

  • Gjelstrup P, Nobach H, Jorgensen FE, Meyer KE (2000) Experimental verification of novel spectral analysis algorithms for laser Doppler anemometry. Proc 10th Int Symp on Appl of Laser Tech to Fluid Mech, Lisbon, paper 3.2

  • Host-Madsen A, Caspersen C (1995) Spectral estimation for random sampling using interpolation. Signal Process 46:297–313

    Article  Google Scholar 

  • Kasdin NJ (1995) Discrete simulation of coloured noise and stochastic processes and 1/f α power law noise generation. Proc IEEE 83–5:802–827

    Google Scholar 

  • Masry E (1978) Alias-free sampling: an alternative conceptualisation. IEEE T Inform Theory 24(3):317–324

    Google Scholar 

  • Müller E, Nobach H, Tropea C (1994) LDA signal reconstruction: application to moment and spectral estimation. Proc 7th Int Symp on Appl of Laser Tech to Fluid Mech, Lisbon, paper 23.2

    Google Scholar 

  • Nobach H (2002) Local time estimation for the slotted correlation function of randomly sampled LDA data. Exp Fluids 32:337–345.

    Article  Google Scholar 

  • Nobach H, Müller E, Tropea C (1998) Efficient estimation of power spectral density from laser Doppler anemometer data. Meas Sci Technol 24:489–498

    Google Scholar 

  • Papoulis A (1991) Probability, random variables and stochastic processes. McGraw-Hill Int

  • Simon L, Scholten JW, Fitzpatrick JA (1995) Vélocimétrie laser: amélioration du traitement des données expérimentales par interpolation d’ordre 1. Proc 12è Cong fr Méch CFM Strasbourg

  • Tropea C (1995) Laser Doppler anemometry: recent developments and future challenges. Meas Sci Technol 6:605–619

    Article  CAS  Google Scholar 

  • Tummers MJ, Passchier DM (1996) Spectral estimation using a variable window and the slotting technique with local normalisation. Meas Sci Technol 7:1541–1546

    Article  CAS  Google Scholar 

  • Van Maanen HRE, Oldenziel A (1998) Estimation of turbulence power spectra from randomly sampled data by curve-fit to the autocorrelation function applied to laser Doppler anemometry. Meas Sci Technol 9:458–467

    Article  Google Scholar 

  • Van Maanen HRE, Tulleken HJAF (1994) Application of Kalman reconstruction to laser Doppler anemometry data for estimation of turbulent velocity fluctuations. Proc 7th Int Symp on Appl of Laser Tech to Fluid Mech, Lisbon

  • Veynante D, Candel SM (1988) Application of nonlinear spectral analysis and signal reconstruction to laser Doppler velocimetry. Exp Fluids 6:534–540

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Website http://www.ldvproc.nambis.de from which the experimental LDA and CTA data were obtained for the comparisons reported in section 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Simon.

Appendix

Appendix

Discrete low pass filter

Let \({\text{R}}_{{{\text{rr}}}} {\text{[n]}} \equiv {\text{R}}_{{{\text{rr}}}} {\left( {{\text{nT}}_{{\text{e}}} } \right)}\) (where Te is the resampling period) be the discrete-time correlation of r(t) obtained by sampling the continuous-time correlation Rrr (τ)

$${\text{R}}_{{{\text{rr}}}} [{\text{n}}] = {\text{ e}}^{{{\text{ - }}\lambda {\left| {\text{n}} \right|}{\text{T}}_{{\text{e}}} }} {\text{ }}{\left( {{\text{R}}_{{{\text{uu}}}} (0) - \frac{\lambda } {2}{\int {{\text{e}}^{{ - \lambda {\left| \theta \right|}}} } }{\text{R}}_{{{\text{uu}}}} (\theta ){\text{d}}\theta } \right)} + \frac{\lambda } {2}{\int {{\text{e}}^{{ - \lambda {\left| \theta \right|}}} {\text{R}}_{{{\text{uu}}}} ({\left| {\text{n}} \right|}{\text{T}}_{{\text{e}}} - \theta ){\text{d}}\theta } }$$
(A1)

Then, the continuous-frequency PSD \({\text{G}}_{{{\text{rr}}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}\) of the discrete-time correlation Rrr [n]

$${\text{G}}_{{{\text{rr}}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)} = {\sum\limits_{\text{n}} {{\text{R}}_{{{\text{rr}}}} [{\text{n}}]} }{\text{e}}^{{{\text{ - j2}}\pi {\text{fnT}}_{{\text{e}}} }} $$
(A2)

may be written according to (2) as

$$\begin{aligned} & {\text{G}}_{{{\text{rr}}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)} \quad = {\text{f}}_{{\text{e}}} {\sum\limits_{\text{k}} {{\text{G}}_{{{\text{rr}}}} {\left( {{\text{f - kf}}_{{\text{e}}} } \right)}} } \\ & \quad = {\left| {{\text{L}}_{{\text{c}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}} \right|}^{2} {\left( {{\text{G}}_{{{\text{uu}}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)} + {\text{G}}_{{{\text{ss}}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}} \right)} \\ \end{aligned} $$
(A3)

where \({\text{f}}_{{\text{e}}} {\text{ = }}\frac{{\text{1}}} {{{\text{T}}_{{\text{e}}} }},\) where \({\text{G}}_{{{\text{uu}}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}\) is the Fourier transform of the discrete-time auto-correlation function Ruu [n] and where \({\text{G}}_{{{\text{ss}}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}\) is the Fourier transform of the discrete-time auto-correlation function of the step noise Rss [n]. It is important to note that \({\text{L}}_{{\text{c}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}\) defined in Eq. (A3) may be approximated according to

$${\left| {{\text{L}}_{{\text{c}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}} \right|}^{2} \cong {\sum\limits_{\text{k}} {{\left| {{\text{L}}_{{\text{c}}} {\left( {{\text{f}} - {\text{kf}}_{{\text{e}}} } \right)}} \right|}^{2} } }$$
(A4)

if the maximum frequency fmax we wish to estimate in the PSD \({\text{G}}_{{{\text{uu}}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}\) is such that

$${\left| {{\text{L}}_{{\text{c}}} {\left( {{\text{f}}_{{{\text{max}}}} - {\text{f}}_{{\text{e}}} } \right)}} \right|}^{2} < < {\left| {{\text{L}}_{{\text{c}}} {\left( {{\text{f}}_{{{\text{max}}}} } \right)}} \right|}^{2} $$
(A5)

or equivalently from Eq. (5)

$${\text{f}}_{{\text{e}}} > > {\text{2f}}_{{{\text{max}}}} $$
(A6)

If this assumption is established, we note \({\text{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{L}}}_{{\text{c}}} {\text{(f)}} = {\left| {{\text{L}}_{{\text{c}}} {\text{(f)}}} \right|}^{2} \;{\text{and}}\;{\text{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{l}}}_{{\text{c}}} (\tau )\) the inverse Fourier transform of \({\text{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{L}}}_{{\text{c}}} {\text{(f)}}{\text{.}}\) It is easy to show from Eq. (5) that

$${\text{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{l}}}_{{\text{c}}} (\tau ) = \frac{\lambda } {2}{\text{e}}^{{ - \lambda {\left| \tau \right|}}} $$
(A7)

Consequently, the Fourier transform of the discrete-time impulse response \({\text{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{l}}}_{{\text{c}}} {\text{[n]}} \equiv {\text{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{l}}}_{{\text{c}}} {\left( {{\text{nT}}_{{\text{e}}} } \right)}\) defined by

$${\text{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{L}}}_{{\text{c}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)} = {\left| {{\text{L}}_{{\text{c}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}} \right|}^{2} = {\text{T}}_{{\text{e}}} {\sum\limits_{\text{n}} {{\text{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{l}}}_{{\text{c}}} [n]} }{\text{e}}^{{{\text{ - j2}}\pi {\text{fnT}}_{{\text{e}}} }} $$
(A8)

may be written

$${\left| {{\text{L}}_{{\text{c}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}} \right|}^{2} \cong \frac{{{\text{T}}_{{\text{e}}} \lambda }} {2} \cdot \frac{{1 - {\text{e}}^{{ - 2\lambda {\text{T}}_{{\text{e}}} }} }} {{1 - 2\cos {\left( {2\pi {\text{fT}}_{{\text{e}}} } \right)}{\text{e}}^{{ - \lambda {\text{T}}_{{\text{e}}} }} + {\text{e}}^{{ - 2\lambda {\text{T}}_{{\text{e}}} }} }}$$
(A9)

If fmax is chosen for instance higher than λ, the numerator of Eq. (A8) may thus be approximated as

$${\left| {{\text{L}}_{{\text{c}}} {\left( {{\text{e}}^{{{\text{j2}}\pi {\text{fT}}_{{\text{e}}} }} } \right)}} \right|}^{2} \cong \frac{{{\left( {{\text{T}}_{{\text{e}}} \lambda } \right)}^{2} }} {{1 - 2\cos {\left( {2\pi {\text{fT}}_{{\text{e}}} } \right)}{\text{e}}^{{ - \lambda {\text{T}}_{{\text{e}}} }} + {\text{e}}^{{ - 2\lambda {\text{T}}_{{\text{e}}} }} }}$$
(A10)

Lastly, using Eqs. (A1), (A2), (A3) and (A9) leads to

$${\text{G}}_{{{\text{ss}}}} {\left( {{\text{e}}^{{{\text{j}}2\pi {\text{fT}}_{{\text{e}}} }} } \right)} = {\text{ }}\frac{{\text{2}}} {{\lambda {\text{T}}_{{\text{e}}} }}{\text{ }}{\left( {{\text{R}}_{{{\text{uu}}}} (0) - \frac{\lambda } {2}{\int {{\text{e}}^{{ - \lambda {\left| \theta \right|}}} } }{\text{R}}_{{{\text{uu}}}} (\theta ){\text{d}}\theta } \right)}\,.$$
(A11)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, L., Fitzpatrick, J. An improved sample-and-hold reconstruction procedure for estimation of power spectra from LDA data. Exp Fluids 37, 272–280 (2004). https://doi.org/10.1007/s00348-004-0814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-004-0814-2

Keywords

Navigation