Skip to main content
Log in

Dielectric tunability and conduction mechanisms of nanostructured (Pb1−x Sr x )TiO3 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of nanosize grains to enhance dielectric tunability in chemically prepared (Pb1−x Sr x )TiO3 (PST) (x=0.1 to 0.5) thin films has been observed. The grain size is evaluated from X-ray diffraction patterns and atomic force microscopy. The average grain size lies in the range of 80–23 nm with varying Sr content. The nanosize grains in the PST films control the dielectric behavior up to the higher frequency region and exhibit large tunability with low loss factor at room temperature. The current–voltage characteristics show a large tunability as electron transport takes place within a highly resistive Fermi gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.T. Li, P.Y. Du, C.L. Mak, K.H. Wang, Appl. Phys. Lett. 90, 262906 (2007)

    Article  ADS  Google Scholar 

  2. Q. Shao, A. Li, Y. Dong, F. Fang, J. Jiang, Z. Liu, J. Phys. D, Appl. Phys. 40, 3793 (2007)

    Article  ADS  Google Scholar 

  3. S.W. Liu, S. Jolly, M. Xiao, Z. Yuan, J. Liu, C.L. Chen, W. Zhu, J. Appl. Phys. 101, 104118 (2007)

    Article  ADS  Google Scholar 

  4. S.W. Liu, J. Weaver, Z. Yuan, W. Donner, C.L. Chen, J.C. Jiang, S.W. Kirchoefer, J. Horwitz, A. Bhalla, Appl. Phys. Lett. 87, 142905 (2005)

    Article  ADS  Google Scholar 

  5. H.J. Chung, S.J. Chung, J.H. Kim, S.I. Woo, Thin Solid Films 394, 213 (2001)

    Article  ADS  Google Scholar 

  6. N.S. Negi, D.R. Sharma, A.C. Restogi, Integr. Ferroelectr. 92, 97 (2007)

    Article  Google Scholar 

  7. M.D. Losego, L.H. Jimison, J.F. Ihlefeld, J.P. Maria, Appl. Phys. Lett. 86, 172906 (2005)

    Article  ADS  Google Scholar 

  8. J.H. Hao, Z. Luo, J. Gao, J. Appl. Phys. 100, 114107 (2006)

    Article  ADS  Google Scholar 

  9. F.M. Pontes, S.H. Leal, M.R.M.C. Santos, E.R. Leite, E. Longo, L.E.B. Saledade, A.J. Chiquito, M.A.C. Machado, J.A. Varela, Appl. Phys. A 80, 875 (2005)

    Article  ADS  Google Scholar 

  10. A.C. Bose, P. Thangadurai, S. Ramasamy, V. Ganesan, S. Asokan, Nanotechnology 17, 1752 (2006)

    Article  ADS  Google Scholar 

  11. J.L. Wang, Y.S. Lai, S.C. Liou, C.C. Tsai, B.S. Chiou, H.C. Cheng, J. Phys. D, Appl. Phys. 41, 085304 (2008)

    Article  ADS  Google Scholar 

  12. T.P. Juan, S. Chen, J.Y. Lee, J. Appl. Phys. 95, 3120 (2004)

    Article  ADS  Google Scholar 

  13. S.T. Chang, J.Y. Lee, Appl. Phys. Lett. 80, 655 (2002)

    Article  ADS  Google Scholar 

  14. H. Yang, K. Tao, B. Chen, Y.G. Qiu, B. Xu, B.R. Zhao, Appl. Phys. Lett. 81, 4817 (2002)

    Article  ADS  Google Scholar 

  15. Y.P. Wang, T.Y. Seng, J. Appl. Phys. 81, 6762 (1997)

    Article  ADS  Google Scholar 

  16. B.D. Cullity, X-Ray Diffraction (Addison-Wesley, Reading, 1967)

    Google Scholar 

  17. R.L. Nigro, R.G. Toro, G. Malandrino, I.L. Fragal, M. Losurdo, M.M. Giangregorio, G. Bruno, V. Raineri, P. Fiorenza, J. Phys. Chem. B 110(35), 17460 (2006)

    Article  Google Scholar 

  18. N. Sivakumar, A. Narayanasamy, N. Ponpandian, G. Govindaraj, J. Appl. Phys. 101, 084116 (2007)

    Article  ADS  Google Scholar 

  19. C. Ang, Z. Yu, Phys. Rev. B 61, 3922 (2000)

    Article  ADS  Google Scholar 

  20. S.G. Lu, X.H. Zhu, C.L. Mak, K.H. Wong, H.L. Chan, C.L. Choy, Appl. Phys. Lett. 82, 2877 (2003)

    Article  ADS  Google Scholar 

  21. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  ADS  Google Scholar 

  22. M. Jain, S.B. Majumder, R. Guo, A.S. Bhalla, R.S. Katiyar, Mater. Lett. 56, 692 (2002)

    Article  Google Scholar 

  23. Z. Huang, J. Xue, S. Liu, Y. Hou, J. Chu, D.H. Zhang, Phys. Rev. B 73, 22104 (2006)

    Google Scholar 

  24. M.A. Lampert, P. Mark, Current Injection in Solids (Academic, New York, 1970)

    Google Scholar 

  25. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Chand Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, K.C., Kotnala, R.K. & Negi, N.S. Dielectric tunability and conduction mechanisms of nanostructured (Pb1−x Sr x )TiO3 thin films. Appl. Phys. A 96, 1009–1015 (2009). https://doi.org/10.1007/s00339-009-5135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5135-0

PACS

Navigation