Skip to main content
Log in

Flavobacterium shanxiense sp. nov., Isolated from Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Strain YF-2T, a Gram-staining-negative, non-motile, non-spore-forming, light-yellow-pigmented bacterium, was isolated from soil samples collected in the city of Yuncheng, Shanxi province of China. Strain YF-2T grew over a temperature range of 25–37 °C, at pH 5.0–8.0 and with 0–5 % (w/v) NaCl. Phylogenetic analysis based on sequence of the 16S rRNA gene showed that strain YF-2T was closely related to strains Flavobacterium akiainvivens CIP 110358T and Flavobacterium hauense KCTC 32147T with 95.99 and 95.92 % sequence similarity, respectively. The dominant fatty acids of strain YF-2T were Summed Feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c) (21.97 %), iso-C15:0 (18.65 %), iso-C17:0 3OH (11.41 %), C16:0 (9.92 %), and anteiso-C15:0 (6.21 %). It contained phosphatidylethanolamine and menaquinone MK-6 as major polar lipid and respiratory quinone, respectively. Strain YF-2T differs from other Flavobacterium species in many characteristics and represents a novel species, for which the name Flavobacterium shanxiense sp. nov. is proposed. The type strain is strain YF-2T (=CCTCC AB 2014079T = JCM 30153T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW et al (1923) Genus II. Flavobacterium gen. nov. In: Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore, pp 97–117

  2. Aihua L, Hongcan L et al (2014) Flavobacterium lacus sp. nov., isolated from a high-altitude lake, and emended description of Flavobacterium filum. Int J Syst Evol Microbiol 64:933–939

    Article  Google Scholar 

  3. Jin HK, Bo HC, Minho J et al (2014) Flavobacterium faecale sp. nov., an agarase-producing species isolated from stools of Antarctic penguins. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.059618-0

    Google Scholar 

  4. Daichi F, Fumiko N et al (2014) Flavobacterium longum sp. nov. and Flavobacterium urocaniciphilum sp. nov., isolated from a wastewater treatment plant, and emended descriptions of Flavobacterium caeni and Flavobacterium terrigena. Int J Syst Evol Microbiol 64:1488–1494

    Article  Google Scholar 

  5. Zamora L, Vela AI et al (2014) Flavobacterium tructae sp. nov. and Flavobacterium piscis sp. nov., isolated from farmed rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol. doi:10.1099/ijs.0.056341-0

    Google Scholar 

  6. Thomas PL, Mohamed F (2014) Flavobacterium spartansii sp. nov., a pathogen of fishes, and emended descriptions of Flavobacterium aquidurense and Flavobacterium araucananum. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.051433-0

    Google Scholar 

  7. Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington

    Google Scholar 

  8. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  9. Tindall BJ, Sikorski J et al (2007) Phenotypic characterization and the principles of comparative systematics. In: Methods for General and Molecular Microbiology, 3rd edn. pp 330–393

  10. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  11. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36

    Article  CAS  Google Scholar 

  12. Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  13. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI, Newark

    Google Scholar 

  14. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  15. Kim OS, Cho YJ et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Thompson JD, Gibson TJ et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  19. Saitou N, Nei M (1987) The neighbor-joining method a new method for reconstructing phylogenetic trees. Mol Biol Evol l4:406–425

    Google Scholar 

  20. Felsenstein J (1985) Confidence limits on phylogenies: an approachusing thebootstrap. Evolution 39:783–791

    Article  Google Scholar 

  21. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  22. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phased high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  23. Bernardet JF, Segers P et al (1996) Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. Int J Syst Bacteriol 46:128–148

    Article  Google Scholar 

  24. Van TS, Mergaert J, Swings J (2003) Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 53:1241–1245

    Article  Google Scholar 

  25. Kun D, Biao X, Fengqiu Z, Gejiao W (2013) Flavobacterium hauense sp. nov., isolated from soil and emended descriptions of Flavobacterium subsaxonicum, Flavobacterium beibuense and Flavobacterium rivuli. Int J Syst Evol Microbiol 63:3237–3242

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The National High Technology Research and Development Program of China (2012AA101403), Chinese National Natural Science Fund (31370155, J1210056) and The Project for Science and Technology of Jiangsu Province (BE2012749).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Liu, Hm., Zhang, R. et al. Flavobacterium shanxiense sp. nov., Isolated from Soil. Curr Microbiol 70, 835–839 (2015). https://doi.org/10.1007/s00284-015-0792-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0792-z

Keywords

Navigation