Skip to main content
Log in

Flavobacterium chungangensis sp. nov., a Bacterium Isolated from Soil of Chinese Cabbage Garden

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A novel bacterial strain MAH-10T was isolated from soil sample of a Chinese cabbage garden, Republic of Korea and was characterized using a polyphasic approach. Cells were Gram-staining negative, rod-shaped, yellowish orange colored, and motile. The strain was aerobic, catalase and oxidase are positive, and optimum growth temperature and pH were 28 °C and 6.5, respectively. Flexirubin-type pigments were found to be present. On the basis of 16S rRNA gene sequence analysis, strain MAH-10T belongs to the genus Flavobacterium and is most closely related to Flavobacterium tyrosinilyticum KCTC 42726T (98.7%). On the basis of phylogenetic tree, other closely related species are Flavobacterium banpakuense KACC 14225T (98.3%) and Flavobacterium chungbukense KACC 15048T (97.6%). In DNA–DNA hybridization tests, the DNA relatedness between strain MAH-10T and its closest phylogenetic neighbor was below 45.0%. The DNA G+C content was 37.2 mol% and the predominant respiratory quinone was menaquinone-6. The major cellular fatty acids were C15:0 iso, C16:0, and summed feature 3 (C16:1ω7c and/or C16:1ω6c). On the basis of DNA–DNA hybridization results and genotypic, chemotaxonomic, and physiological data analysis, it is demonstrated that strain MAH-10T represented a novel species within the genus Flavobacterium, for which the name Flavobacterium chungangensis is proposed. The type strain is MAH-10T (=KACC 19296T=CGMCC 1.16226T). The NCBI GenBank accession number for the 16S rRNA gene sequence of strain MAH-10T is KY964277 and the digital protologue database (DPD) Taxon Number of strain MAH-10T is TA00296.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aslam Z, Im WT, Kim MK, Lee ST (2005) Flavobacterium granuli sp. nov., isolated from granules used in a wastewater treatment plant. Int J Syst Evol Microbiol 55:747–751

    Article  PubMed  CAS  Google Scholar 

  2. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Genus II. Flavobacterium gen. nov. In: Whitman W (ed) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore, pp 97–117

    Google Scholar 

  3. Bernardet JF, Bowman JP (2011) Genus I. Flavobacterium Bergey et al. 1923. In: Whitman W (ed) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Williams & Wilkins, Baltimore, pp 112–154

    Google Scholar 

  4. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148

    Article  Google Scholar 

  5. Christensen WB (1946) Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) chemical methods in bacterial systematics. Academic Press, London, pp 267–287

    Google Scholar 

  7. Dong K, Chen F, Du Y, Wang G (2013) Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 63:886–892

    Article  PubMed  CAS  Google Scholar 

  8. Du J, Yi TH (2016) Flavobacterium tyrosinilyticum sp. nov., isolated from the rhizosphere of wild strawberry. Int J Syst Evol Microbiol 66:2629–2634

    Article  PubMed  CAS  Google Scholar 

  9. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  10. Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Ecol 8:87–91

    Article  CAS  Google Scholar 

  11. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  12. Gillis M, De Ley J, De Cleene M (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153

    Article  PubMed  CAS  Google Scholar 

  13. Gomori G (1955) Preparation of buffers for use in enzyme studies. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York, pp 138–146

    Google Scholar 

  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  15. Huq MA, Kim YJ, Hoang VA, Siddiqi MZ, Yang DC (2015) Paenibacillus ginsengiterrae sp. nov., a ginsenoside-hydrolyzing bacteria isolated from soil of ginseng field. Arch Microbiol 197:389–396

    Article  PubMed  CAS  Google Scholar 

  16. Huq MA, Kim YJ, Min JW, Yang DC (2014) Use of Lactobacillus rossiae DC05 for bioconversion of the major ginsenosides Rb1 and Re into the pharmacologically active ginsenosides C-K and Rg2. Food Sci Biotechnol 23:1561–1567

    Article  CAS  Google Scholar 

  17. Huq MA, Kim YJ, Siraj FM, Siddiqi MZ, Yang DC (2015) Enzymatic transformation of the major ginsenoside Rb1 to compound K by Weissella hellenica DC06. Indian J Biotechnol 14:270–275

    CAS  Google Scholar 

  18. Kang JY, Chun J, Jahng KY (2013) Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 63:1633–1638

    Article  PubMed  CAS  Google Scholar 

  19. Kim BY, Weon HY, Cousin S, Yoo SH, Kwon SW, Go SJ, Stackebrandt E (2006) Flavobacterium daejeonense sp. nov. and Flavobacterium suncheonense sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 56:1645–1649

    Article  PubMed  CAS  Google Scholar 

  20. Kim JJ, Jin HM, Lee HJ, Jeon CO, Kanaya E, Koga Y, Takano K, Kanaya S (2011) Flavobacterium banpakuense sp. nov., isolated from leaf-and-branch compost. Int J Syst Evol Microbiol 61:1595–1600

    Article  PubMed  CAS  Google Scholar 

  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  PubMed  CAS  Google Scholar 

  22. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Kirchman DL (2002) The ecology of CytophagaFlavobacteria in aquatic environments. FEMS Microbiol Ecol 39(2):91–100

    PubMed  CAS  Google Scholar 

  24. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (ed) Nucleic acid techniques in bacterial systematics. Willey, Chichester

    Google Scholar 

  25. Lim CS, Oh YS, Lee JK, Park AR, Yoo JS, Rhee SK, Roh DH (2011) Flavobacterium chungbukense sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:2734–2739

    Article  PubMed  CAS  Google Scholar 

  26. Liu Y, Jin JH, Zhou YG, Liu HC, Liu ZP (2010) Flavobacterium caeni sp. nov., isolated from a sequencing batch reactor for the treatment of malachite green effluents. Int J Syst Evol Microbiol 60(2):417–421

    Article  PubMed  CAS  Google Scholar 

  27. McConaughy BL, Laird CD, McCarthy BJ (1969) Nucleic acid reassociation in formamide. Biochemistry 8:3289–3295

    Article  PubMed  CAS  Google Scholar 

  28. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  29. Moore DD, Dowhan D (1995) Preparation and analysis of DNA. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11

    Google Scholar 

  30. Park M, Lu S, Ryu SH, Chung BS, Park W, Kim CJ, Jeon CO (2006) Flavobacterium croceum sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 56:2443–2447

    Article  PubMed  CAS  Google Scholar 

  31. Park M, Ryu SH, Vu THT, Ro HS, Yun PY, Jeon CO (2007) Flavobacterium defluvii sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57:233–237

    Article  PubMed  CAS  Google Scholar 

  32. Ryu SH, Park M, Jeon Y, Lee JR, Park W, Jeon CO (2007) Flavobacterium filum sp. nov., isolated from a wastewater treatment plant in Korea. Int J Syst Evol Microbiol 57:2026–2030

    Article  PubMed  CAS  Google Scholar 

  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 4:406–425

    CAS  Google Scholar 

  34. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  35. Singh H, Du J, Won K, Yang JE, Akter S, Kim KY, Yi TH (2015) Flavobacterium vireti sp. nov., isolated from soil. Antonie Van Leeuwenhoek 107:1421–1428

    Article  PubMed  CAS  Google Scholar 

  36. Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  37. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifano P (2008) Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 56:625–636

    Article  PubMed  CAS  Google Scholar 

  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wayne LG, Brenner DJ, Colwell RR et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  41. Weon HY, Song MH, Son JA, Kim BY, Kwon SW, Go SJ, Stackebrandt E (2007) Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 57:1594–1598

    Article  PubMed  Google Scholar 

  42. Xu M, Xin Y, Tian J, Dong K, Yu Y, Zhang J, Liu H, Zhou Y (2011) Flavobacterium sinopsychrotolerans sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 61:20–24

    Article  PubMed  CAS  Google Scholar 

  43. Yang JE, Kim SY, Im WT, Yi TH (2011) Flavobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol 61:1408–1412

    Article  PubMed  CAS  Google Scholar 

  44. Yoon JH, Kang SJ, Lee JS, Oh TK (2007) Flavobacterium terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:947–950

    Article  PubMed  CAS  Google Scholar 

  45. Yoon JH, Kang SJ, Oh TK (2006) Flavobacterium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:997–1000

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed with the support of the Cooperative Research Program of the National Research Foundation of Korea grant (Project No. NRF-2016R1A2B4014591) funded by the Korea government (MISP), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Amdadul Huq or Sun-Young Lee.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Md. Amdadul Huq and Shahina Akter have equally contributed to this work.

The NCBI GenBank accession number for the 16S rRNA gene sequence of strains MAH-10T is KY964277 (not released). Digital protologue’ database (DPD) Taxon Number: TA00296.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

. Negative properties of strain MAH-10T carried out by commercial test kits (API 20NE and API ZYM). (PPTX 43 KB)

Supplementary material 2 (PPTX 90 KB)

Supplementary material 3 (PPTX 307 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huq, M.A., Akter, S. & Lee, SY. Flavobacterium chungangensis sp. nov., a Bacterium Isolated from Soil of Chinese Cabbage Garden. Curr Microbiol 75, 842–848 (2018). https://doi.org/10.1007/s00284-018-1456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1456-6

Navigation