Skip to main content
Log in

Magnetic Resonance Imaging of Mass Transport and Structure Inside a Phototrophic Biofilm

  • Published:
Current Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The aim of this study was to utilize magnetic resonance imaging (MRI) to image structural heterogeneity and mass transport inside a biofilm which was too thick for photon based imaging. MRI was used to map water diffusion and image the transport of the paramagnetically tagged macromolecule, Gd-DTPA, inside a 2.5 mm thick cyanobacterial biofilm. The structural heterogeneity of the biofilm was imaged at resolutions down to 22 × 22 μm, enabling the impact of biofilm architecture on the mass transport of both water and Gd-DTPA to be investigated. Higher density areas of the biofilm correlated with areas exhibiting lower relative water diffusion coefficients and slower transport of Gd-DTPA, highlighting the impact of biofilm structure on mass transport phenomena. This approach has potential for shedding light on heterogeneous mass transport of a range of molecular mass molecules in biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barranguet C, van Beusekom SAM, Veuger B, Neu TR, Manders EMM, Sinke JJ, Admiraal W (2004) Studying undisturbed autotrophic biofilms: still a technical challenge. Aquat Microb Ecol 34(1):1–9. doi:10.3354/ame034001

    Article  Google Scholar 

  2. Bartacek J, Vergeldt FJ, Gerkema E, Jenicek P, Lens PNL, Van As H (2009) Magnetic resonance microscopy of iron transport in methanogenic granules. J Magn Reson 200(2):303–312. doi:10.1016/j.jmr.2009.07.013

    Article  PubMed  CAS  Google Scholar 

  3. Batstone DJ, Keller J (2001) Variation of bulk properties of anaerobic granules with wastewater type. Water Res 35(7):1723–1729. doi:10.1016/s0043-1354(00)00446-2

    Article  PubMed  CAS  Google Scholar 

  4. Bishop PL, Gibbs JT, Cunningham BE (1997) Relationship between concentration and hydrodynamic boundary layers over biofilms. Environ Technol 18(4):375–385. doi:10.1080/09593331808616551

    Article  CAS  Google Scholar 

  5. Buffiere P, Steyer JP, Fonade C, Moletta R (1995) Comprehensive modeling of methanogenic biofilms in fluidized-bed systems: mass-transfer limitations and multisubstrate aspects. Biotechnol Bioeng 48(6):725–736. doi:10.1002/bit.260480622

    Article  PubMed  CAS  Google Scholar 

  6. Callaghan PT (1993) Principles of nuclear magnetic resonance microscopy. Oxford University Press, Oxford

    Google Scholar 

  7. deBeer D, Stoodley P, Lewandowski Z (1997) Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol Bioeng 53(2):151–158. doi:10.1002/(sici)1097-0290(19970120)53:2<151:aid-bit4>3.0.co;2-n

    Article  CAS  Google Scholar 

  8. Debeer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass-transport. Biotechnol Bioeng 43(11):1131–1138. doi:10.1002/bit.260431118

    Article  CAS  Google Scholar 

  9. Gordon MJ, Chu KC, Margaritis A, Martin AJ, Ethier CR, Rutt BK (1999) Measurement of Gd-DTPA diffusion through PVA hydrogel using a novel magnetic resonance imaging method. Biotechnol Bioeng 65(4):459–467. doi:10.1002/(sici)1097-0290(19991120)65:4<459:aid-bit10>3.0.co;2-o

    Article  PubMed  CAS  Google Scholar 

  10. McLean JS, Ona ON, Majors PD (2008) Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy. ISME J 2(2):121–131. doi:10.1038/ismej.2007.107

    Article  PubMed  CAS  Google Scholar 

  11. Paramonova E, De Jong ED, Krom BP, Van der Mei HC, Busscher HJ, Sharma PK (2007) Low-load compression testing: a novel way of measuring Biofilm thickness. Appl Environ Microbiol 73(21):7023–7028. doi:10.1128/aem.00935-07

    Article  PubMed  CAS  Google Scholar 

  12. Phoenix VR, Holmes WM (2008) Magnetic resonance imaging of structure, diffusivity, and copper immobilization in a phototrophic biofilm. Appl Environ Microbiol 74(15):4934–4943. doi:10.1128/aem.02783-07

    Article  PubMed  CAS  Google Scholar 

  13. Phoenix VR, Holmes WM, Ramanan B (2008) Magnetic resonance imaging (MRI) of heavy-metal transport and fate in an artificial biofilm. Miner Mag 72(1):483–486. doi:10.1180/minmag.2008.072.1.483

    Article  CAS  Google Scholar 

  14. Ramanan B, Holmes WM, Sloan WT, Phoenix VR (2010) Application of paramagnetically tagged molecules for magnetic resonance imaging of biofilm mass transport Processes. Appl Environ Microbiol 76(12):4027–4036. doi:10.1128/aem.03016-09

    Article  PubMed  CAS  Google Scholar 

  15. Renslow RS, Majors PD, McLean JS, Fredrickson JK, Ahmed B, Beyenal H (2010) In situ effective diffusion coefficient profiles in live biofilms using pulsed-field gradient nuclear magnetic resonance. Biotechnol Bioeng 106(6):928–937. doi:10.1002/bit.22755

    Article  PubMed  CAS  Google Scholar 

  16. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111 (MAR):1–61

    Google Scholar 

  17. Roeselers G, van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20(3):227–235. doi:10.1007/s10811-007-9223-2

    Article  PubMed  CAS  Google Scholar 

  18. Sirlin CB, Vera DR, Corbeil JA, Caballero MB, Buxton RB, Mattrey RF (2004) Gadolinium-DTPA-dextran: a macromolecular MR blood pool contrast agent. Acad Radiol 11(12):1361–1369. doi:10.1016/j.acra.2004.10.048

    Article  PubMed  Google Scholar 

  19. Stewart PS (1998) A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol Bioeng 59(3):261–272. doi:10.1002/(sici)1097-0290(19980805)59:3<261:aid-bit1>3.0.co;2-9

    Article  PubMed  CAS  Google Scholar 

  20. Wieland A, de Beer D, Damgaard LR, Kuhl M, van Dusschote D, Van As H (2001) Fine-scale measurement of diffusivity in a microbial mat with nuclear magnetic resonance imaging. Limnol Oceanogr 46(2):248–259

    Article  Google Scholar 

  21. Zhang TC, Bishop PL (1994) Evaluation of tortuosity factors and effective diffusivities in biofilms. Water Res 28(11):2279–2287. doi:10.1016/0043-1354(94)90043-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a Lord Kelvin and Adam Smith Scholarship, University of Glasgow and funding from the Engineering and Physical Sciences Research Council (EP/G028443/1). We thank Jim Mullen for his assistance with RF coil building and MRI experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernon R. Phoenix.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 514 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanan, B., Holmes, W.M., Sloan, W.T. et al. Magnetic Resonance Imaging of Mass Transport and Structure Inside a Phototrophic Biofilm. Curr Microbiol 66, 456–461 (2013). https://doi.org/10.1007/s00284-012-0292-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0292-3

Keywords

Navigation