Skip to main content

Nuclear Magnetic Resonance (NMR) and Surface Plasmon Resonance (SPR) Imaging as an Advanced Tool for Examining Biofilm Matrix (Structure, Composition, and Dynamics)

  • Protocol
  • First Online:
  • 735 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Despite a surge in biofilm characterization research in recent years, it is still an incompletely understood conundrum, especially due to its highly complex, temporally and spatially variable intrinsic parameters. In fact, the increased persistence and resistance of biofilm is governed by a critical ensemble of chemical, physical and mechanical properties such as extracellular polymeric substances (EPS) composition, nutrient gradient, metabolite content, shear stress, hydrodynamics, mass transport etc. Surface Plasmon Resonance and Nuclear Magnetic Resonance imaging uniquely provide label-free tracking of quantitative, local changes caused by movement, adhesion, flow and removal of bacterial cells and other components. The greatest advantage of them over other super resolution imaging and microscopy techniques is their probe independent, non-invasive mode of working in real time scale based on population level analysis of the biofilms. In this chapter, nuclear magnetic resonance and surface plasmon resonance approaches in biological, biomedical, industrial, environmental research are summarized with detailed insight into the fundamentals and working principles of these techniques, case specific applications, suitability and advantages of the methods. Furthermore, possibilities and limitations are recapitulated and analyzed with respect to open research problems and recent technical and methodical developments. This would help interdisciplinary researchers’ in crafting experimental strategy according to their study objectives, standardizing sample selection, parameter choice, data collection and analysis in biofilm structure, composition and dynamics imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Klevens RM, Edwards JR, Richards CL, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Public Health Rep 122:160–166

    Article  PubMed  PubMed Central  Google Scholar 

  2. Scott RD (2009) The direct medical costs of healthcare-associated infections in U.S. hospitals and the benefits of prevention. CDC, Atlanta, GA

    Google Scholar 

  3. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  PubMed  Google Scholar 

  4. Safari A, Tukovic Z, Walter M, Casey E, Ivankovic A (2015) Mechanical properties of a mature biofilm from a wastewater system: from microscale to macroscale level. Biofouling 31:651–664

    Article  CAS  PubMed  Google Scholar 

  5. Das T, Sharma PK, Krom BP, van der Mei HC, Busscher HJ (2011) Role of eDNA on the adhesion forces between streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity. Langmuir 27:10113–10118

    Article  CAS  PubMed  Google Scholar 

  6. Rühs PA, Böni L, Fuller GG, Inglis RF, Fischer P (2013) In-situ quantification of the interfacial rheological response of bacterial biofilms to environmental stimuli. PLoS One 8:e78524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Paramonova E, Krom BP, van der Mei HC, Busscher HJ, Sharma PK (2009) Hyphal content determines the compression strength of candida albicans biofilms. Microbiology 155:1997–2003

    Article  CAS  PubMed  Google Scholar 

  8. Wilking JN, Angelini TE, Seminara A, Brenner MP, Weitz DA (2011) Biofilms as complex fluids. MRS Bull 36:385–391

    Article  CAS  Google Scholar 

  9. Kundukad B et al (2016) Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. Soft Matter 12:5718–5726

    Article  CAS  PubMed  Google Scholar 

  10. Guélon T, Hunter RC, Mathias JD, Deffuant G (2013) Homogenization of pseudomonas aeruginosa pao1 biofilms visualized by freeze-substitution electron microscopy. Biotechnol Bioeng 110:1405–1418

    Article  PubMed  CAS  Google Scholar 

  11. Galy O et al (2012) Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophys J 103:1400–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paul E, Ochoa JC, Pechaud Y, Liu Y, Liné A (2012) Effect of shear stress and growth conditions on detachment and physical properties of biofilm. Water Res 46:5499–5508

    Article  CAS  PubMed  Google Scholar 

  13. Karimi A, Karig D, Kumar A, Ardekani AM (2015) Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. Lab Chip 15:23–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  15. Høiby N, Bjarnsholt T, Givskov M, Molin S (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  CAS  Google Scholar 

  16. Worthington RJ, Richards JJ, Melander C (2012) Small molecule control of bacterial biofilms. Org Biomol Chem 10:7457–7474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tomaras AP, Dorsey CW, Edelmann RE, Actis LA (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology (Reading, Engl) 149:3473–3484

    Article  CAS  Google Scholar 

  18. Nirschl M, Reuter F, Voros J (2011) Review of transducer principles for label-free biomolecular interaction analysis. Biosensors 1:70–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vecchi G, Giannini V, Rivas JG (2009) Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys Rev B 80:201401

    Article  CAS  Google Scholar 

  20. Li XK, Soler M, Ozdemir CI, Belushkin A, Yesilkoy F, Altug H (2017) Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion. Lab Chip 17:2208–2217

    Article  CAS  PubMed  Google Scholar 

  21. Guo H, Guo JP (2015) Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor. Opt Lett 40:249–252

    Article  PubMed  CAS  Google Scholar 

  22. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  23. Seiler ST, Rich IS, Lindquist NC (2016) Direct spectral imaging of plasmonic nanohole arrays for realtime sensing. Nanotechnology 27:184001

    Article  PubMed  CAS  Google Scholar 

  24. Rampazzi S, Danese G, Leporati F, Marabelli F (2016) A localized surface plasmon resonance-based portable instrument for quick on-site biomolecular detection. IEEE Trans Instrum Meas 65:317–327

    Article  Google Scholar 

  25. Schasfoort RBM (2017) Examples of SPR imaging instruments. In: Schasfoort RBM (ed) Handbook of surface plasmon resonance, 2nd edn. R. Soc. Chem, Cambridge, pp 89–97

    Chapter  Google Scholar 

  26. Corso AJ, Zuccon S, Zuppella P, Pelizzo MG (2015) Flexible SPR system able to switch between Kretschmann and SPRi. Proc SPIE 9506:95061D

    Google Scholar 

  27. Shao YH, Li Y, Gu DY, Zhang K, Qu JL et al (2013) Wavelength-multiplexing phase-sensitive surface plasmon imaging sensor. Opt Lett 38:1370–1372

    Article  PubMed  Google Scholar 

  28. Gordon JG, Ernst S (1980) Surface-plasmons as a probe of the electrochemical interface. Surf Sci 101:499–506

    Article  CAS  Google Scholar 

  29. Nylander C, Liedberg B, Lind T (1982) Gas-detection by means of surface-plasmon resonance. Sensors Actuators 3:79–88

    Article  CAS  Google Scholar 

  30. Löfas S, Malmqvist M, Rönnberg I, Stenberg E, Liedberg B, Lundstrom I (1991) Bioanalysis with surface-plasmon resonance. Sensors Actuators B Chem 5:79–84

    Article  Google Scholar 

  31. Yeatman E, Ash EA (1987) Surface-plasmon microscopy. Electron Lett 23:1091–1092

    Article  Google Scholar 

  32. Rothenhäusler B, Knoll W (1988) Surface-plasmon microscopy. Nature 332:615–617

    Article  Google Scholar 

  33. Zeng YJ, Hu R, Wang L, Gu DY, He JN et al (2017) Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability. Nano 6:1017–1030

    Google Scholar 

  34. Wong CL, Olivo M (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics 9:809–824

    Article  CAS  Google Scholar 

  35. Abbas A, Linman MJ, Cheng Q (2011) New trends in instrumental design for surface plasmon resonance based biosensors. Biosens Bioelectron 26:1815–1824

    Article  CAS  PubMed  Google Scholar 

  36. D’Agata R, Spoto G (2013) Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem 405:573–584

    Article  PubMed  CAS  Google Scholar 

  37. Liu CJ, Hu FC, Yang W, Xu JY, Chen Y (2017) A critical review of advances in surface plasmon resonance imaging sensitivity. Trends Anal Chem 97:354–362

    Article  CAS  Google Scholar 

  38. Puiu M, Bala C (2016) SPR and SPR imaging: recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors 16:870

    Article  PubMed Central  Google Scholar 

  39. Scarano S, Mascini M, Turner APF, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25:957–966

    Article  CAS  PubMed  Google Scholar 

  40. Homola J (2006) Surface Plasmon resonance based sensors. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  41. Abadian PN, Tandogan N, Jamieson JJ, Goluch ED (2014) Using surface plasmon resonance imaging to study bacterial biofilms. Biomicrofluidics 8:021804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schneider WR, Doetsch RN (1974) Effect of viscosity on bacterial motility. J Bacteriol 117:696–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abadian PN, Goluch ED (2015) Surface plasmon resonance imaging (SPRi) for multiplexed evaluation of bacterial adhesion onto surface coatings. Anal Methods 7:115–122

    Article  CAS  Google Scholar 

  44. Eteshola E, Leckband D (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sensors Actuators B Chem 72:129–133

    Article  CAS  Google Scholar 

  45. Reimhult K, Petersson K, Krozer A (2008) QCM-D analysis of the performance of blocking agents on gold and polystyrene surfaces. Langmuir 24:8695–8700

    Article  CAS  PubMed  Google Scholar 

  46. Lewandowski Z, Beyenal H (2001) Limiting-current-type microelectrodes for quantifying mass transport dynamics in biofilms. Meth Enzymol S337:339–359

    Article  Google Scholar 

  47. Bryers JD, Drummond F (1998) Local macromolecule diffusion coefficients in structurally non-uniform bacterial biofilms using fluorescence recovery after photobleaching (FRAP). Biotechnol Bioeng 60:462–473

    Article  CAS  PubMed  Google Scholar 

  48. Costerton J, Lewandowski Z, Caldwell D, Korber D, Lappin-Scott H (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  49. Yu T, Bishop P (1998) Stratification of microbial metabolic processes and redox potential change in an aerobic biofilm studied using microelectrodes. Water Sci Technol 37:195–198

    Article  CAS  Google Scholar 

  50. Sternberg C, Christensen BB, Johansen T, Nielsen AT, Andersen JB, Givskov M, Molin S (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65:4108–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Werner E, Roe F, Bugnicourt A, Franklin M, Heydorn A, Molin S et al (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Teal T, Lies D, Wold B, Newman D (2006) Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl Environ Microbiol 72:7324–7330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stewart PS (2001) Multicellular resistance: biofilms. Trends Microbiol 9:204

    Article  CAS  PubMed  Google Scholar 

  54. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  CAS  PubMed  Google Scholar 

  55. Nielsen AT, Tolker-Nielsen T, Barken KB, Molin S (2000) Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol 2:59–68

    Article  CAS  PubMed  Google Scholar 

  56. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ, Caldwell DE (1994) Multicellular Organization in a Degradative Biofilm Community. Appl Environ Microbiol 60:434–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saville R, Dieckmann N, Spormann A (2010) Spatiotemporal activity of the mshA gene system in Shewanella oneidensis MR-1 biofilms. FEMS Microbiol 308:76–83

    Google Scholar 

  58. Fabricius-Dyg J, Mistberger G, Staal M, Borisov S, Klimant I, Kuhl M (2012) Imaging of surface O2 dynamics in corals with magnetic micro optode particle. Mar Biol 159:1621–1163

    Google Scholar 

  59. Lewandowski Z, Altobelli S, Fukushima E (1993) NMR and microelectrode studies of hydrodynamics and kinetics in biofilms. Biotechnol Prog 9:40–45

    Google Scholar 

  60. Rasmussen K, Lewandowski Z (1998) Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnol Bioeng 59:302–309

    Article  CAS  PubMed  Google Scholar 

  61. Krawczyk-Barsch E, Grossmann K, Arnold T, Hofmann S, Wobus A (2008) Influence of uranium(VI) on the metabolic activity of stable multispecies biofilms studied by oxygen microsensors and fluorescence microscopy. Geochim Cosmochim Acta 72:5251–5265

    Article  CAS  Google Scholar 

  62. Kroukamp O, Wolfaardt G (2009) CO2 production as an indicator of biofilm metabolism. Appl Environ Microbiol 75:4391–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rinck PA (2001) Magnetic resonance in medicine. Blackwell Publishing, Berlin

    Google Scholar 

  64. McRobbie DW, Moore EA, Graves MJ, Prince MA (2006) MRI from picture to proton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  65. Mansfield P, Morris PG (1982) NMR imaging in biomedicine. Academic Press, New York

    Google Scholar 

  66. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon Press, Oxford

    Google Scholar 

  67. Antalek B (2002) Using pulsed gradient spin echo NMR for chemical mixture analysis: how to obtain optimum results. Concepts Magn Reson 14:225–258

    Article  CAS  Google Scholar 

  68. Stilbs P (1987) Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Prog Nucl Magn Reson Spectrosc 19:1–45

    Article  CAS  Google Scholar 

  69. Waldeck AR, Kuchel PW, Lennon AJ, Chapman BE (1997) NMR diffusion measurements to characterise membrane transport and solute binding. Prog Nucl Magn Reson Spectrosc 30:39–68

    Article  CAS  Google Scholar 

  70. Price WS (1998) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part II. Experimental aspects. Concepts Magn Reson 10:197–237

    Article  CAS  Google Scholar 

  71. Callaghan PT (2011) Translational dynamics and magnetic resonance. Principles of pulsed gradient spin echo NMR. Oxford University Press, Oxford

    Book  Google Scholar 

  72. Bloch F, Hansen WW, Packard M (1946) The nuclear induction experiment. Phys Rev 70:474–485

    Article  CAS  Google Scholar 

  73. Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  74. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  75. Mansfield P, Grannell PK (1973) NMR ‘diffraction’ in solids? J Phys C Solid State 6:L422–L426

    Article  CAS  Google Scholar 

  76. de Beer D, Stoodley P, Lewandowski Z (1994) Liquid flow in heterogeneous biofilms. Biotechnol Bioeng 44:636–641

    Article  PubMed  Google Scholar 

  77. Picologlou BF, Zelver N, Characklis WG (1980) Biofilm growth and hydraulic performance. J Hydraul Div 106(HY5):733–746

    Article  Google Scholar 

  78. Cunningham AB (1989) Hydrodynamics and solute transport at the fluid-biofilm interface. In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms. Wiley, Hoboken, NJ, pp 19–31

    Google Scholar 

  79. Siegrist H, Gujer W (1985) Mass transfer mechanism in a heterotrophic biofilm. Water Res 19:1369–1378

    Article  CAS  Google Scholar 

  80. Rittman BE (1982) The effect of shear stress on biofilm loss rate. Biotechnol Bioeng 24:501–506

    Google Scholar 

  81. Bouwer EJ (1987) Theoretical investigation of particle deposition in biofilm systems. Research 21:1489–1498

    Google Scholar 

  82. Lewandowski Z, Altobelli SA, Majors PD, Fukushima E (1992) NMR imaging of hydrodynamics near microbially colonized surfaces. Water Sci Technol 26:577–584

    Article  CAS  Google Scholar 

  83. Cho ZH, Oh CH, Mun CW, Kim YS (1986) Some results of high flow-velocity NMR imaging using selection gradient. Magn Reson Med 3:857–862

    Article  CAS  PubMed  Google Scholar 

  84. Majors PD, Caprihan A, Fukushima E (1990) Dual echo flow NMR imaging. In: 31st experimental NMR conference. Asilomar, CA, April

    Google Scholar 

  85. Revsbech NP, Jorgensen BB (1986) Microelectrodes: their use in microbial ecology. In: Advances in microbial ecology. Plenum Publishing Corporation, New York

    Google Scholar 

  86. Lewandowski Z, Walser G, Larsen R, Peyton B, Characklis WG (1990) Biofilm surface positioning. In: Environmental engineering proceedings, EE DivJASCE, Arlington, VA, July 8–11

    Google Scholar 

  87. de Beer D, Stoodley P (1995) Relation between the structure of an aerobic biofilm and transport phenomena. Water Sci Technol 32:11–18

    Article  Google Scholar 

  88. Converti A, Del Borghi M, Zilli M (1997) Evaluation of phenol diffusivity through Pseudomonas putida biofilms: application to the study of mass velocity distribution in a biofilter. Bioprocess Eng 16:105–114

    Article  CAS  Google Scholar 

  89. Stewart PS, Robertson CR (1989) Microbial growth in a fixed volume: studies with entrapped Escherichia coli. Appl Microbiol Biotechnol 30:34–40

    Article  CAS  Google Scholar 

  90. Zhang TC, Bishop PL (1994) Evaluation of tortuosity factors and effective diffusivities in biofilms. Water Res 28:2279–2287

    Article  CAS  Google Scholar 

  91. Beyenal H, Tanyolac A, Lewandowski Z (1998) Measurement of local effective diffusivity in heterogeneous biofilms. Water Sci Technol 38(8–9):171–178

    Article  CAS  Google Scholar 

  92. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  93. Beuling EE, van Dusschoten D, Lens P, van den Heuvel JC, Van As H, Ottengraf SPP (1998) Characterization of the diffusive properties of biofilms using pulsed field gradient-nuclear magnetic resonance. Biotechnol Bioeng 60:283–291

    Article  CAS  PubMed  Google Scholar 

  94. Vogt M, Flemming HC, Veeman WS (2000) Diffusion in Pseudomonas aeruginosa biofilms: a pulsed field gradient NMR study. J Biotechnol 77:137–146

    Article  CAS  PubMed  Google Scholar 

  95. Renslow RS, Majors PD, McLean JS, Fredrickson JK, Ahmed B, Beyenal H (2010) In situ effective diffusion coefficient profiles in live biofilms using pulsed-field gradient nuclear magnetic resonance. Biotechnol Bioeng 106:928–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xavier JB, Foster KR (2007) Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci U S A 104(3):876–881

    Google Scholar 

  97. Hoskins BC, Fevang L, Majors PD, Sharma MM, Georgiou G (1999) Selective imaging of biofilms in porous media by NMR relaxation. J Magn Reson 139:67–73

    Article  CAS  PubMed  Google Scholar 

  98. Metzger U, Lankes U, Hardy EH, Gordalla BC, Frimmel FH (2006) Monitoring the formation of an Aureobasidium pullulans biofilm in a bead-packed reactor via flow-weighted magnetic resonance imaging. Biotechnol Lett 28:1305–1311

    Article  CAS  PubMed  Google Scholar 

  99. Seymour JD, Codd SL, Gjersing EL, Stewart PS (2004) Magnetic resonance microscopy of biofilm structure and impact on transport in a capillary bioreactor. J Magn Reson 167:322–327

    Article  CAS  PubMed  Google Scholar 

  100. Majors PD, McLean JS, Pinchuk GE, Fredrickson JK, Gorby YA, Minard KR, Wind RA (2005) NMR methods for in situ biofilm metabolism studies. J Microbiol Methods 62:337–344

    Article  CAS  PubMed  Google Scholar 

  101. Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A 79:3523–3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Majors PD, McLean JS, Fredrickson JK, Wind RA (2005) NMR methods for in-situ biofilm metabolism studies: spatial and temporal resolved measurements. Water Sci Technol 52(7):7–12

    Article  CAS  Google Scholar 

  103. McLean JS, Ona ON, Majors PD (2008) Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy. ISME J 2(2):121–131

    Article  CAS  PubMed  Google Scholar 

  104. Renslow RS, Marshall MJ, Tucker AE, Chrisler WB, Yu XY (2017) In situ nuclear magnetic resonance microimaging of live biofilms in a microchannel. Analyst 142:2363–2371

    Article  CAS  PubMed  Google Scholar 

  105. Cao B, Majors PD, Ahmed B, Renslow RS, Silvia CP, Shi L, Kjelleberg S, Redrickson JK, Beyenal H (2012) Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environ Microbiol 14(11):2901–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Marshall M, Beliaev A, Dohnalkova A, Kennedy D, Shi L, Wang Z (2006) C-type cytochrome dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol 4:1324–1333

    Article  CAS  Google Scholar 

  107. Jiang S, Kim MG, Kim SJ, Suk H, Lee S, Noh D (2011) Bacterial formation of extracellular U(VI) nanowires. Chem Commun 47:8076–8078

    Article  CAS  Google Scholar 

  108. Phoenix VR, Holmes WM (2008) Magnetic resonance imaging of structure, diffusivity, and copper immobilization in a phototrophic biofilm. Appl Environ Microbiol 74(15):4934–4943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal Delta sediments. Nature 430:68–71

    Article  CAS  PubMed  Google Scholar 

  110. Johnson KJ, Szymanowski JES, Borrok D, Huynh TQ, Fein JB (2007) Proton and metal adsorption onto bacterial consortia: stability constants for metal-bacterial surface complexes. Chem Geol 239:13–26

    Article  CAS  Google Scholar 

  111. Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70:3091–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mitra, M. (2021). Nuclear Magnetic Resonance (NMR) and Surface Plasmon Resonance (SPR) Imaging as an Advanced Tool for Examining Biofilm Matrix (Structure, Composition, and Dynamics). In: Nag, M., Lahiri, D. (eds) Analytical Methodologies for Biofilm Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1378-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1378-8_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1377-1

  • Online ISBN: 978-1-0716-1378-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics