Skip to main content
Log in

Influence of Lipopolysaccharide on the Surface Proton-Binding Behavior of Shewanella spp.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study investigates the potentiometric properties of several strains of Shewanella spp. and determines whether these properties can be correlated with lipopolysaccharide (LPS) type. The LPS of eight Shewanella strains was characterized using silver-stained sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and their potentiometric properties determined using high-resolution acid–base titrations. Titrations showed that total ligand concentrations (L T ) ranged from 0.903 ± 0.007 μmol/mg (S. baltica 63) to 1.387 ± 0.007 μmol/mg (S. amazonensis SB2B). Smooth strains (possessing O-side chains) exhibited higher mean L T values than rough strains (no O-side chain). A Tukey’s honestly significantly different (HSD) test revealed, smooth strains exhibited significantly higher L T values than rough strains in 69% of comparisons. Comparison of individual pK a concentrations revealed that smooth LPS strains of Shewanella were relatively enriched in reactive groups at pK a 5, suggesting their LPS O-side chains contained detectable carboxyl groups. Combined pKa spectra from all eight Shewanella strains produced a common trend indicating that the way in which the surface proton-buffering capacity changes with pH is similar for the species studied here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Literature Cited

  1. Borrock D, Turner BF, Fein JB (2005) A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings. Am J Sci 305:826–853

    Article  Google Scholar 

  2. Brassard P, Kramer JR, Collins PV (1990) Binding site analysis using linear programming. Environ Sci Technol 24:195–200

    Article  CAS  Google Scholar 

  3. Cox JS, Smith DS, Warren LA, Ferris FG (1999) Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ Sci Technol 33:4514–4521

    Article  CAS  Google Scholar 

  4. Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328

    Article  CAS  Google Scholar 

  5. Haas JR, Dichristina TJ, Wade R Jr (2001) Thermodynamics of U(VI) sorption onto Shewanella putrefaciens. Chem Geol 180:33–54

    Article  CAS  Google Scholar 

  6. Haas JR (2004) Effects of cultivation conditions on acid-base titration properties of Shewanella putrefaciens. Chem Geol 209:67–81

    Article  CAS  Google Scholar 

  7. Hitchcock PJ, Brown TM (1983) Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154:269–277

    PubMed  CAS  Google Scholar 

  8. Korenevsky AA, Vinogradov E, Gorby Y, Beveridge TJ (2002) Characterization of the lipopolysaccharides and capsules of Shewanella spp. Appl Environ Microbiol 68:4653–4657

    Article  PubMed  CAS  Google Scholar 

  9. Korenevsky A, Beveridge TJ (2002) Cell surface physico-chemical properties of Shewanella species. Xth International Congress of Bacteriology and Applied Microbiology, Paris, France, p. 10

    Google Scholar 

  10. Lower SK (2005) Directed natural forces of affinity between a bacterium and mineral. Am J Sci 305:752–765

    Article  CAS  Google Scholar 

  11. Makin SA, Beveridge TJ (1996) Pseudomonas aeruginosa PAO1 ceases to express serotype-specific lipopolysaccharide at 45°C. J Bacteriol 178:3350–3352

    PubMed  CAS  Google Scholar 

  12. Martell AE, Smith RM (1987) Critically selected stability constants of metal complexes database version 4.0. Texas A&M University, College Station, TX

    Google Scholar 

  13. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321

    Article  CAS  PubMed  Google Scholar 

  14. Myers CR, Carstens BP, Antholine WE, Myers J M (2000) Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anearobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106

    Article  PubMed  CAS  Google Scholar 

  15. Ngwenya BT, Sutherland IW, Kennedy L (2003) Comparison of the acid-base behaviour and metal adsorption characteristics of a gram negative bacterium with other strains. Appl Geochem 18:527–538

    Article  CAS  Google Scholar 

  16. Nozue H, Hayashi T, Hashimoto Y, Ezaki T, Hamasaki K, Ohwada K, Terawaki Y (1992) Isolation and characterization of shewanella-alga from human clinical specimens and emendation of the description of S-alga Simidu Et-Al, 1990, 335. Int J Syst Bacteriol 42:628–634

    Article  PubMed  CAS  Google Scholar 

  17. Perdue EM (1985) Acidic functional groups of humic substances. In: Aiken GR, McKnight DM, Wershaw R, MacCarthy P (eds) Humic substances in soil, sediment and water. Wiley, New York, pp 493–526

    Google Scholar 

  18. Phoenix VR, Martinez RE, Konhauser KO, Ferris FG (2002) Characterization and implications of the cell surface reactivity of Calothrix sp. strain KC97. Appl Environ Microbiol 68:4827–4834

    Article  PubMed  CAS  Google Scholar 

  19. Raetz CRH (1996) Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles. In: Neidhardt FC, Curtis R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: Cellular and molecular biology, Vol. 1. American Society for Microbiology, Washington, DC pp 1035–1063

    Google Scholar 

  20. Shashkov AS, Senchenkova SN, Nazerenko EV, Zubkov VA, Gorshkova NM, Knirel YA, Gorshkova RP (1997) Structure of the phosphorylated polysaccharide from Shewanella putrefaciens strain S29. Carbohydr Res 303:333–338

    Article  PubMed  CAS  Google Scholar 

  21. Shashkov AS, Senchenkova SN, Nazerenko EV, Zubkov VA, Gorshkova NM, Knirel YA, Gorshkova RP (1998) Structure of the acidic polysaccharide chain of the lipopolycaccharide of Shewanella alga 48055. Carbohydr Res 309:103–108

    Article  PubMed  CAS  Google Scholar 

  22. Smith SD, Adams NWH, Kramer JR (1999) Resolving uncertainty in chemical speciation determinations. Geochim Cosmochim Acta 63:3337–3347

    Article  CAS  Google Scholar 

  23. Tsai C-M, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119

    Article  PubMed  CAS  Google Scholar 

  24. Urrutia MM, Roden EE, Fredrickson JK, Zachara JM (1998) Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron-reducing bacterium Shewanella alga. Geomicrobiol J 15:269–291

    Article  CAS  Google Scholar 

  25. Vinogradov E, Korenevsky A, Beveridge TJ (2003) The structure of the O-specific polysaccharide chain of the Shewanella algae BrY lipopolysaccharide. Carbohydr Res 338:385–388

    Article  PubMed  CAS  Google Scholar 

  26. Vinogradov E, Korenevsky A, Beveridge TJ (2003) The structure of the rough-type lipopolysaccharide from Shewanella oneidensis MR-1, containing 8-amino-8-deoxy-Kdo and an open chain form of 2-acetamido-2-deoxy-D-galactose. Carbohydr Res. 338:1991–1997

    Article  PubMed  CAS  Google Scholar 

  27. Vinogradov E, Korenevsky A, Beveridge TJ (2004) The structure of the core region of the lipopolysaccharide from Shewanella algae BrY, containing 8-amino-3,8-dideoxy-D-manno-oct-2-ulosonic acid. Carbohydr Res 339:737–740

    Article  PubMed  CAS  Google Scholar 

  28. Yee N, Fein JB (2001) Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Acta 65:2037–2042

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science and Engineering Research Council (NSERC) of Canada Discovery, US-DOE-NABIR, and Advanced Food & Materials Network–National Centres for Excellence grants to TJB and through an Ontario Premier’s Research Excellence Award to FGF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernon R. Phoenix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phoenix, V.R., Korenevsky, A.A., Ferris, F.G. et al. Influence of Lipopolysaccharide on the Surface Proton-Binding Behavior of Shewanella spp.. Curr Microbiol 55, 152–157 (2007). https://doi.org/10.1007/s00284-007-0077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-0077-2

Keywords

Navigation