Skip to main content

Advertisement

Log in

Hepatic Arterial Embolization with Doxorubicin-Loaded Superabsorbent Polymer Microspheres in a Rabbit Liver Tumor Model

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Objectives

The pharmacokinetic profile after hepatic arterial embolization with superabsorbent microspheres (QuadraSpheres) loaded with doxorubicin was studied.

Methods

Rabbits with hepatic VX2 tumors were treated with intra-arterial administration of QuadraSpheres loaded with doxorubicin, or transarterial chemoembolization (TACE) using doxorubicin, Lipiodol and Embospheres, or hepatic arterial infusion (HAI) of doxorubicin. Tumor specimens were evaluated by fluorescence microscopy, and plasma and tumor concentrations of doxorubicin were measured.

Results

The peak plasma concentration of doxorubicin was lower in the QuadraSphere group (309.9 ng/ml) than in the HAI (673.4 ng/ml) or TACE (360.5 ng/ml) groups, suggesting higher tumor retention in the QuadraSphere group. Intratumoral doxorubicin levels declined to negligible levels at 1 and 3 days after treatment, respectively, in the HAI and TACE groups. In the QuadraSphere groups, intratumoral doxorubicin level declined after day 1, but was still detectable at 14 days after treatment and was higher than that in the other groups at 1, 3, and 7 days. Intratumoral doxorubicin fluorescence was detected at all time points in the QuadraSphere group, but only at 1 day after treatment in the TACE group.

Conclusions

Hepatic arterial administration of doxorubicin-loaded QuadraSpheres enables the sustained release of doxorubicin to hepatic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dodd GD 3rd, Soulen MC, Kane RA et al (2000) Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough. Radiographics 20:9–27

    PubMed  Google Scholar 

  2. Liem MS, Poon RT, Lo CM et al (2005) Outcome of transarterial chemoembolization in patients with inoperable hepatocellular carcinoma eligible for radiofrequency ablation. World J Gastroenterol 11:4465–4471

    PubMed  Google Scholar 

  3. Lo CM, Ngan H, Tso WK et al (2002) Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 35:1164–1171

    Article  PubMed  CAS  Google Scholar 

  4. Maataoui A, Qian J, Vossoughi D et al (2005) Transarterial chemoembolization alone and in combination with other therapies: a comparative study in an animal HCC model. Eur Radiol 15:127–133

    Article  PubMed  CAS  Google Scholar 

  5. Martin M, Tarara D, Wu YM et al (1996) Intrahepatic arterial chemoembolization for hepatocellular carcinoma and metastatic neuroendocrine tumors in the era of liver transplantation. Am Surg 62:724–732

    PubMed  CAS  Google Scholar 

  6. Llovet JM, Bruix J (2003) Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology 37:429–442

    Article  PubMed  CAS  Google Scholar 

  7. Llovet JM, Real MI, Montana X et al (2002) Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359:1734–1739

    Article  PubMed  Google Scholar 

  8. Dhanasekaran R, Kooby DA, Staley CA et al (2010) Comparison of conventional transarterial chemoembolization (TACE) and chemoembolization with doxorubicin drug eluting beads (DEB) for unresectable hepatocellular carcinoma (HCC). J Surg Oncol 101:476–480

    PubMed  Google Scholar 

  9. Eyol E, Boleij A, Taylor RR et al (2008) Chemoembolisation of rat colorectal liver metastases with drug eluting beads loaded with irinotecan or doxorubicin. Clin Exp Metastasis 25:273–282

    Article  PubMed  CAS  Google Scholar 

  10. Hong K, Khwaja A, Liapi E et al (2006) New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clin Cancer Res 12:2563–2567

    Article  PubMed  CAS  Google Scholar 

  11. Kettenbach J, Stadler A, Katzler IV et al (2008) Drug-loaded microspheres for the treatment of liver cancer: review of current results. Cardiovasc Intervent Radiol 31:468–476

    Article  PubMed  Google Scholar 

  12. Lammer J, Malagari K, Vogl T et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 33:41-52

  13. Lewis AL, Gonzalez MV, Lloyd AW et al (2006) DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol 17:335–342

    Article  PubMed  Google Scholar 

  14. Lewis AL, Taylor RR, Hall B et al (2006) Pharmacokinetic and safety study of doxorubicin-eluting beads in a porcine model of hepatic arterial embolization. J Vasc Interv Radiol 17:1335–1343

    Article  PubMed  Google Scholar 

  15. Taylor RR, Tang Y, Gonzalez MV et al (2007) Irinotecan drug eluting beads for use in chemoembolization: in vitro and in vivo evaluation of drug release properties. Eur J Pharm Sci 30:7–14

    Article  PubMed  CAS  Google Scholar 

  16. Varela M, Real MI, Burrel M et al (2007) Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol 46:474–481

    Article  PubMed  CAS  Google Scholar 

  17. Egorin MJ (1998) Overview of recent topics in clinical pharmacology of anticancer agents. Cancer Chemother Pharmacol 42(Suppl):S22–S30

    Article  PubMed  CAS  Google Scholar 

  18. Emerich DF, Snodgrass P, Lafreniere D et al (2002) Sustained release chemotherapeutic microspheres provide superior efficacy over systemic therapy and local bolus infusions. Pharm Res 19:1052–1060

    Article  PubMed  CAS  Google Scholar 

  19. Shapiro GI, Harper JW (1999) Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest 104:1645–1653

    Article  PubMed  CAS  Google Scholar 

  20. Khankan AA, Osuga K, Hori S et al (2004) Embolic effects of superabsorbent polymer microspheres in rabbit renal model: comparison with tris-acryl gelatin microspheres and polyvinyl alcohol. Radiat Med 22:384–390

    PubMed  Google Scholar 

  21. Bilbao JI, de Luis E, Garcia de Jalon JA et al (2008) Comparative study of four different spherical embolic particles in an animal model: a morphologic and histologic evaluation. J Vasc Interv Radiol 19:1625–1638

    Article  PubMed  Google Scholar 

  22. de Luis E, Bilbao JI, de Ciercoles JA et al (2008) In vivo evaluation of a new embolic spherical particle (HepaSphere) in a kidney animal model. Cardiovasc Intervent Radiol 31:367–376

    Article  PubMed  Google Scholar 

  23. Jiaqi Y, Hori S, Minamitani K et al (1996) A new embolic material: super absorbent polymer (SAP) microsphere and its embolic effects. Nippon Igaku Hoshasen Gakkai Zasshi 56:19–24

    PubMed  CAS  Google Scholar 

  24. Osuga K, Hori S, Hiraishi K et al (2008) Bland embolization of hepatocellular carcinoma using superabsorbent polymer microspheres. Cardiovasc Intervent Radiol 31:1108–1116

    Article  PubMed  Google Scholar 

  25. Jordan O, Denys A, De Baere T et al (2010) Comparative study of chemoembolization loadable beads: in vitro drug release and physical properties of DC bead and hepasphere loaded with doxorubicin and irinotecan. J Vasc Interv Radiol 21(7):1084–1090

    Article  PubMed  Google Scholar 

  26. Lee KH, Liapi EA, Cornell C et al (2010) Doxorubicin-loaded QuadraSphere microspheres: plasma pharmacokinetics and intratumoral drug concentration in an animal model of liver cancer. Cardiovasc Intervent Radiol 33(3):576–582

    Article  PubMed  Google Scholar 

  27. Ko YH, Pedersen PL, Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 173:83–91

    Article  PubMed  CAS  Google Scholar 

  28. Taylor S, Folkman J (1982) Protamine is an inhibitor of angiogenesis. Nature 297:307–312

    Article  PubMed  CAS  Google Scholar 

  29. Geschwind JF, Ko YH, Torbenson MS et al (2002) Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 62:3909–3913

    PubMed  CAS  Google Scholar 

  30. Furuta T, Kanematsu T, Kakizoe S et al (1983) Selective effect of doxorubicin suspended in lipiodol on VX2 carcinoma in rabbits. J Surg Oncol 39:229–234

    Article  Google Scholar 

  31. Iwai K, Maeda H, Konno T et al (1987) Tumor targeting by arterial administration of lipids: rabbit model with VX2 carcinoma in the liver. Anticancer Res 7:321–327

    PubMed  CAS  Google Scholar 

  32. Nagamitsu A, Konno T, Oda T et al (1993) Targeted cancer chemotherapy for VX2 tumour implanted in the colon with lipiodol as a carrier. Eur J Cancer 34:1764–1769

    Article  Google Scholar 

  33. Kan Z (1994) Iodized oil injected in the hepatic artery will enter the portal vein. J Vasc Interv Radiol 5:525–526

    Article  PubMed  CAS  Google Scholar 

  34. Kan Z (1996) Dynamic study of iodized oil in the liver and blood supply to hepatic tumors. An experimental investigation in several animal species. Acta Radiol Suppl 408:1–25

    PubMed  CAS  Google Scholar 

  35. Kan Z, Sato M, Ivancev K et al (1993) Distribution and effect of iodized poppyseed oil in the liver after hepatic artery embolization: experimental study in several animal species. Radiology 186:861–866

    PubMed  CAS  Google Scholar 

  36. Kan Z, Wright K, Wallace S (1997) Ethiodized oil emulsions in hepatic microcirculation: in vivo microscopy in animal models. Acad Radiol 4(4):275–282

    Article  PubMed  CAS  Google Scholar 

  37. Nakamura H, Hashimoto T, Oi H et al (1989) Transcatheter oily chemoembolization of hepatocellular carcinoma. Radiology 170:783–786

    PubMed  CAS  Google Scholar 

  38. Olivi A, Brem H (1994) Interstitial chemotherapy with sustained-release polymer systems for the treatment of malignant gliomas. Recent Results Cancer Res 135:149–154

    Article  PubMed  CAS  Google Scholar 

  39. Osuga K, Hori S, Kitayoshi H et al (2002) Embolization of high flow arteriovenous malformations: experience with use of superabsorbent polymer microspheres. J Vasc Interv Radiol 13:1125–1133

    Article  PubMed  Google Scholar 

  40. Osuga K, Khankan AA, Hori S et al (2002) Transarterial embolization for large hepatocellular carcinoma with use of superabsorbent polymer microspheres: initial experience. J Vasc Interv Radiol 13:929–934

    Article  PubMed  Google Scholar 

  41. Stampfl S, Stampfl U, Rehnitz C et al (2007) Experimental evaluation of early and long-term effects of microparticle embolization in two different mini-pig models. Part II: liver. Cardiovasc Intervent Radiol 30:462–468

    Article  PubMed  CAS  Google Scholar 

  42. Siskin GP, Dowling K, Virmani R et al (2003) Pathologic evaluation of a spherical polyvinyl alcohol embolic agent in a porcine renal model. J Vasc Interv Radiol 14:89–98

    Article  PubMed  Google Scholar 

  43. Derdeyn CP, Graves VB, Salamat MS et al (1997) Collagen-coated acrylic microspheres for embolotherapy: in vivo and in vitro characteristics. AJNR Am J Neuroradiol 18:647–653

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Biosphere Medical, Inc, and the John S. Dunn Research Foundation.

Conflict of interest

The authors have no other conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Wright, K.C., Ensor, J. et al. Hepatic Arterial Embolization with Doxorubicin-Loaded Superabsorbent Polymer Microspheres in a Rabbit Liver Tumor Model. Cardiovasc Intervent Radiol 34, 1021–1030 (2011). https://doi.org/10.1007/s00270-011-0154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-011-0154-6

Keywords

Navigation