Skip to main content

Advertisement

Log in

High-pressure high-temperature phase relations in FeTiO3 up to 35 GPa and 1600 °C

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Phase relations in FeTiO3 were precisely determined at 25–35 GPa and 600–1600 °C using multianvil high-pressure experiments with tungsten carbide anvils. Pressure generation up to about 36 GPa at 1600 °C was evaluated using Al2O3 solubility in MgSiO3 perovskite (Pv) in the system MgSiO3–Al2O3. At about 28 GPa, FeTiO3 Pv dissociates into an assemblage of calcium titanate (CT)-type Fe2TiO4 + orthorhombic-I (OI)-type TiO2 below 1200 °C. However, above 1200 °C at 28 GPa, FeTiO3 Pv decomposes into a new, denser phase assemblage of CT-type Fe2TiO4 + a new compound of FeTi2O5. The new phase FeTi2O5 was recovered as an amorphous phase at 1 atm. In situ X-ray diffraction experiments at 35.1 GPa indicated that the new phase (N-p) FeTi2O5 has orthorhombic symmetry with cell parameters a = 8.567(2) Å, b = 5.753(1) Å and c = 5.257(1) Å. In addition, the assemblage of CT-type Fe2TiO4 + OI-type TiO2 changes to FeO wüstite (Wu) + OI-type TiO2 at about 33 GPa below 1000 °C. The phase assemblages in FeTiO3 are denser in the order: FeTiO3 (Pv) → 1/2Fe2TiO4 (CT) + 1/2TiO2 (OI) → 1/3Fe2TiO4 (CT) + 1/3FeTi2O5 (N-p) → FeO (Wu) + TiO2 (OI). Our results indicate that the upper stability limit of FeTiO3 Pv is about 28 GPa at 600–1600 °C. This puts a constraint on peak shock pressure for formation of naturally discovered lithium niobate-type FeTiO3 which was interpreted to be retrograde transition product of FeTiO3 Pv on release of shock pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaogi M, Shirako Y, Kojitani H, Nagakari T, Yusa H, Yamaura K (2014) High-pressure transitions in NaZnF3 and NaMnF3 perovskites, and crystal-chemical characteristics of perovskite-postperovskite transitions in ABX3 fluorides and oxides. Phys Earth Planet Inter 228:160–169

    Article  Google Scholar 

  • Akaogi M, Abe K, Yusa H, Kojitani H, Mori D, Inaguma Y (2015) High-pressure phase behaviors of ZnTiO3: ilmenite–perovskite transition, decomposition of perovskite into constituent oxides, and perovskite–lithium niobate transition. Phys Chem Miner 42:421–429. doi:10.1007/s00269-015-0733-1

    Article  Google Scholar 

  • Dubrovinskaia NA, Dubrovinsky LS, Ahuja R, Prakapenka VB, Dmitriev V, Weber HP, Osorio-Guillen JM, Johansson B (2001) Experimental and theoretical identification of a new high-pressure TiO2 polymorph. Phys Rev Lett 87:275501–1–275501-4

    Article  Google Scholar 

  • Dubrovinsky L, El Goresy A, Gillet P, Wu X, Simionivici A (2009) A novel natural shock-induced high-pressure polymorph of FeTiO3 ilmenite with the Li-niobate structure from the Ries crater, Germany. Meteorit Planet Sci 44:A64

    Google Scholar 

  • El Goresy A, Chen M, Dubrovinsky L, Gillet P, Graup G (2001a) An ultradense polymorph of rutile with seven-coordinated titanium from the Ries Crater. Science 293:1467–1470

    Article  Google Scholar 

  • El Goresy A, Chen M, Gillet P, Dubrovinsky L, Graup G, Ahuja R (2001b) A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries Crater in Germany. Earth Planet Sci Lett 192:485–495

    Article  Google Scholar 

  • El Goresy A, Dubrovinsky L, Gillet P, Graup G, Chen M (2010) Akaogiite: an ultra-dense polymorph of TiO2 with the baddeleyite-type structure, in shocked garnet gneiss from the Ries Crater, Germany. Am Mineral 95:892–895

    Article  Google Scholar 

  • Fei Y, Mao H-K (1994) In situ determination of the NiAs phase of FeO at high pressure and temperature. Science 266:1678–1680

    Article  Google Scholar 

  • Fei Y, Orman J Van, Li J, Western W Van, Sanloup C, Minarik W, Hirose K, Komabayashi T (2004) Experimentally determined post-spinel transformation boundary Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res. doi:10.1029/2003JB002562

    Google Scholar 

  • Guo WQ, Malus S, Ryan DH, Altounian Z (1999) Crystal structure and cation distributions in the FeTi2O5–Fe2TiO5 solid solution series. J Phys Condens Matter 11:6337–6346

    Article  Google Scholar 

  • Ishii T, Shi L, Huang R, Tsujino N, Druzhbin D, Myhill R, Li Y, Wang L, Yamamoto T, Miyajima N, Kawazoe T, Nishiyama N, Higo Y, Tange Y, Katsura T (2016) Generation of pressure over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils. Rev Sci Instr 87:024501–1–024501-6

    Google Scholar 

  • Ito E (2007) Theory and practice—multianvil cells and high-pressure experimental methods. In: Price GD (ed) Mineral Physics, Treatise on Geophysics, vol 2. Elsevier, Amsterdam, pp 197–230

    Chapter  Google Scholar 

  • Ito E, Kubo A, Katsura T, Akaogi M, Fujita T (1998) High-pressure transformation of pyrope (Mg3Al2Si3O12) in a sintered diamond cubic assembly. Geophys Res Lett 25:821–824

    Article  Google Scholar 

  • Jacobsen SD, Reichmann H-J, Spetzler HA, Mackwell SJ, Smyth JR, Angel RJ, McCammon CA (2002) Structure and elasticity of single-crystal (Mg, Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J Geophys Res 107:4-1–4-14

    Article  Google Scholar 

  • Kondo T, Sawamoto H, Yoneda A, Kato M, Matsumuro A, Yagi T (1993) Ultra-high pressure and high-temperature generation by use of the MA8 system with sintered-diamond anvils. High Temp High Press 25:105–112

    Google Scholar 

  • Kubo A, Akaogi M (2000) Post-garnet transitions in the system Mg4Si4O12–Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Phys Earth Planet Inter 121:85–102

    Article  Google Scholar 

  • Leinenweber K, Utsumi W, Tsuchida Y, Yagi T, Kurita K (1991) Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3. Phys Chem Miner 18:244–250

    Article  Google Scholar 

  • Leinenweber KD, Tyburczy JA, Sharp TG, Soignard E, Diedich T, Petuskey WB, Wang Y, Mosenfelder JL (2012) Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). Am Miner 97:353–368

    Article  Google Scholar 

  • Liu Z, Irifune T, Nishi M, Tange Y, Arimoto T, Shinmei T (2016) Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Phys Earth Planet Inter 257:18–27

    Article  Google Scholar 

  • McCammon CA (1993) Effect of pressure on the composition of the lower mantle end member FexO. Science 259:66–68

    Article  Google Scholar 

  • Mehta A, Leinenweber K, Navrotsky A, Akaogi M (1994) Calorimetric study of high pressure polymorphism in FeTiO3: stability of the perovskite phase. Phys Chem Miner 21:207–212

    Article  Google Scholar 

  • Ming LC, Kim YH, Uchida T, Wang Y, Rivers M (2006) In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation. Am Miner 91:120–126

    Article  Google Scholar 

  • Morishima H, Yusa H (1998) Numerical calculations of the temperature distribution and the cooling speed in the laser-heated diamond anvil cell. J Appl Phys 83:4572–4577

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • Nishio-Hamane D, Shimizu A, Nakahira R, Niwa K, Sano-Furukawa A, Okada T, Yagi T, Kikegawa T (2010a) The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa. Phys Chem Miner 37:129–136

    Article  Google Scholar 

  • Nishio-Hamane D, Yagi T, Ohshiro M, Niwa K, Okada T, Seto Y (2010b) Decomposition of perovskitre FeTiO3 into wustite Fe1-xTi0.5xO and orthorhombic FeTi3O7 at high pressure. Phys Rev B 82:092103–1–092103–4

    Article  Google Scholar 

  • Nishio-Hamane D, Zhang M, Yagi T, Ma Y (2012) High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure. Am Mineral 97:568–572

    Article  Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D’’ layer. Nature 430:445–448

    Article  Google Scholar 

  • Okada T, Yagi T, Nishio-Hamane D (2011) High-pressure phase behavior of MnTiO3: decomposition of perovskite into MnO and MnTi2O5. Phys Chem Minerals 38:251–258

    Article  Google Scholar 

  • Sakai T, Ohtani E, Hirao N, Ohishi Y (2011) Equation of state of the NaCl-B2 phase up to 304 GPa. J Appl Phys 109:084912. doi:10.1063/1.3573393

    Article  Google Scholar 

  • Seto Y, Nishio-Hamane D, Nagai T, Sata N (2010) Development of a software suite on X-ray diffraction experiments. Rev High Press Sci Tech 20:269–276

    Article  Google Scholar 

  • Shoemaker EM, Chao ECT (1961) New evidence for the impact origin of the Ries Basin, Bavaria, Germany. J Geophys Res 66:3371–3378

    Article  Google Scholar 

  • Syono Y, Yamauchi H, Ito A, Someya Y, Ito E, Matsui Y, Akaogi M, Akimoto S (1981) Magnetic properties of the disordered ilmenite FeTiO3 II synthesized at very high pressures. In: Watanabe H, Iida S, Sugimoto M (eds) Ferrites. Center Acad Publ, Japan, pp 192–195

    Google Scholar 

  • Varga T, Kumar A, Vlahos E, Denev S, Park M, Hong S, Sanehira T, Wang Y, Fennie CJ, Streiffer SK, Ke X, Schiffer P, Gopalan V, Mitchell JF (2009) Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3. Phys Rev Lett 103:047601-1–047601-4

    Article  Google Scholar 

  • Wu X, Steinle-Neumann G, Narygina O, Kantor I, McCammon C, Prakapenka V, Swamy V, Dubrovinsky L (2009) High-pressure behavior of perovskite: FeTiO3 dissociation into (Fe1-δ, Tiδ)O and Fe1 + δ, Ti2 - δO5. Phys Rev Lett 103:065503-1–065503-4

    Google Scholar 

  • Yamanaka T, Komatsu Y, Nomori H (2007) Electron density distribution of FeTiO3 ilmenite under high pressure analyzed by MEM using single crystal diffraction intensities. Phys Chem Miner 34:307–318

    Article  Google Scholar 

  • Yamanaka T, Kyono A, Nakamoto Y, Meng Y, Kharlamova S, Struzhkin VV, Mao HK (2013) High-pressure phase transitions of Fe3−xTixO4 solid solution up to 60 GPa correlated with electronic spin transition. Am Miner 98:736–744

    Article  Google Scholar 

  • Yang X, Hazen RM (1999) Comparative high-pressure crystal chemistry of karrooite, MgTi2O5, with different ordering states. Am Miner 84:130–137

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to K. Takemura and T. Katsura for useful suggestions and K. Oka for his help in X-ray diffraction experiments. Constructive comments by anonymous reviewers were useful to improve the manuscript. Synchrotron X-ray diffraction experiments were performed under SPring-8 proposals (Nos. 2014B1492, 2015A1200, 2015A1204, 2015B1157). This work was supported in part by JSPS grants (No. 25287145 to M. A., No. 25106006 to H. Y. and No. 15H04128 to Y. I.) and by the MEXT-supported program for the Strategic Research Foundation at Private Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akaogi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akaogi, M., Abe, K., Yusa, H. et al. High-pressure high-temperature phase relations in FeTiO3 up to 35 GPa and 1600 °C. Phys Chem Minerals 44, 63–73 (2017). https://doi.org/10.1007/s00269-016-0836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0836-3

Keywords

Navigation