Skip to main content

Advertisement

Log in

Phase stability of iron germanate, FeGeO3, to 127 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The high-pressure behavior of germanates is of interest as these compounds serve as analogs for silicates of the deep Earth. Current theoretical and experimental studies of iron germanate, FeGeO3, are limited. Here, we have examined the behavior of FeGeO3 to 127 GPa using the laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. Upon compression at room temperature, the ambient-pressure clinopyroxene phase transforms to a disordered triclinic phase [FeGeO3 (II)] at ~ 18 GPa in agreement with earlier studies. An additional phase transition to FeGeO3 (III) occurs above 54 GPa at room temperature. Laser-heating experiments (~ 1200–2200 K) were conducted at three pressures (33, 54, and 123 GPa) chosen to cover the stability regions of different GeO2 polymorphs. In all cases, we observe that FeGeO3 dissociates into GeO2 + FeO at high pressure and temperature conditions. Neither the perovskite nor the post-perovskite phase was observed up to 127 GPa at ambient or high temperatures. The results are consistent with the behavior of FeSiO3, which also dissociates into a mixture of the oxides (FeO + SiO2) at least up to 149 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badro J (2014) Spin transitions in mantle minerals. Annu Rev Earth Planet Sci 42:231–248

    Article  Google Scholar 

  • Bremholm M, Dutton SE, Stephens PW, Cava RJ (2011) NaIrO3—a pentavalent post-perovskite. J Solid State Chem 184:601–607

    Article  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cohen RE, Lin Y (2014) Prediction of a potential high-pressure structure of FeSiO3. Phys Rev B 90:140102

    Article  Google Scholar 

  • Dorfman SM, Shieh SR, Meng Y et al (2012) Synthesis and equation of state of perovskites in the (Mg,Fe)3Al2Si3O12 system to 177 GPa. Earth Planet Sci Lett 357–358:194–202

    Article  Google Scholar 

  • Dorfman SM, Meng Y, Prakapenka VB, Duffy TS (2013) Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite. Earth Planet Sci Lett 361:249–257

    Article  Google Scholar 

  • Duffy T, Madhusudhan N, Lee KKM (2015) Mineralogy of super-earth planets. In: Schubert G (ed) Treatise on geophysics, Second edn. Elsevier, Oxford, pp 149–178

    Chapter  Google Scholar 

  • Fei Y, Ricolleau A, Frank M et al (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci 104:9182–9186

    Article  Google Scholar 

  • Fischer RA, Campbell AJ, Shofner GA et al (2011) Equation of state and phase diagram of FeO. Earth Planet Sci Lett 304:496–502

    Article  Google Scholar 

  • Fujino K, Nishio-Hamane D, Suzuki K et al (2009) Stability of the perovskite structure and possibility of the transition to the post-perovskite structure in CaSiO3, FeSiO3, MnSiO3 and CoSiO3. Phys Earth Planet Inter 177:147–151

    Article  Google Scholar 

  • Goldschmidt VM (1926) Die Gesetze der Krystallochemie. Naturwiss 14:477–485

    Article  Google Scholar 

  • Haines J, Léger JM (1993) X-ray diffraction study of TiO2 up to 49 GPa. Phys B Condens Matter 192:233–237

    Article  Google Scholar 

  • Haines J, Léger JM, Chateau C et al (1998) Ferroelastic phase transition in rutile-type germanium dioxide at high pressure. Phys Rev B 58:R2909–R2912

    Article  Google Scholar 

  • Haines J, Léger JM, Chateau C, Pereira AS (2000) Structural evolution of rutile-type and CaCl2-type germanium dioxide at high pressure. Phys Chem Miner 27:575–582

    Article  Google Scholar 

  • Hattori T, Matsuda T, Tsuchiya T et al (1999) Clinopyroxene-perovskite phase transition of FeGeO3 under high pressure and room temperature. Phys Chem Miner 26:212–216

    Article  Google Scholar 

  • Hattori T, Tsuchiya T, Nagai T, Yamanaka T (2001) Sequential high-pressure transformations of FeGeO3 high-P clinopyroxene (C2/c) at temperatures up to 365 °C. Phys Chem Miner 28:377–387

    Article  Google Scholar 

  • Hirose K, Kawamura K, Ohishi Y et al (2005) Stability and equation of state of MgGeO3 post-perovskite phase. Am Mineral 90:262–265

    Article  Google Scholar 

  • Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data; the use of regression diagnostics. Mineral Mag 61(1):65–77

    Article  Google Scholar 

  • Hugh-Jones DA, Woodland AB, Angel RJ (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes. Am Mineral 79:1032–1041

    Google Scholar 

  • Ismailova L, Bykova E, Bykov M et al (2016) Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite. Sci Adv 2:e1600427

  • Ito E, Matsui Y (1979) High-pressure transformations in silicates, germanates, and titanates with ABO3 stoichiometry. Phys Chem Miner 4:265–273

    Article  Google Scholar 

  • Jacobsen SD, Lin J-F, Angel RJ et al (2005) Single-crystal synchrotron X-ray diffraction study of wüstite and magnesiowüstite at lower-mantle pressures. J Synchrotron Radiat 12:577–583

    Article  Google Scholar 

  • Jephcoat AP, Besedin SP (1996) Temperature measurement and melting determination in the laser-heated diamond-anvil cell. Philos Trans Math Phys Eng Sci 354:1333–1360

    Article  Google Scholar 

  • Kuwayama Y, Hirose K, Sata N, Ohishi Y (2005) The pyrite-type high-pressure form of silica. Science 309:923–925

    Article  Google Scholar 

  • Lay T, Hernlund J, Garnero EJ, Thorne MS (2006) A post-perovskite lens and D″ heat flux beneath the central Pacific. Science 314:1272–1276

    Article  Google Scholar 

  • Leinenweber K, Utsumi W, Tsuchida Y et al (1991) Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3. Phys Chem Miner 18(4):244–250

    Article  Google Scholar 

  • Leinenweber K, Wang Y, Yagi T, Yusa H (1994) An unquenchable perovskite phase of MgGeO 3 and comparison with MgSiO3 perovskite. Am Miner 79:197–199

    Google Scholar 

  • Lin J-F, Speziale S, Mao Z, Marquardt H (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev Geophys 51:244–275

    Article  Google Scholar 

  • Lindsley DH, Davis BTC, Macgregor ID (1964) Ferrosilite (FeSiO3): synthesis at high pressures and temperatures. Science 144:73–74

    Article  Google Scholar 

  • Liu LG (1977) The post-spinel phases of twelve silicates and germanates. In: Manghnani MH, Akimoto S (eds) High-pressure research; applications in geophysics. Academic, New York, pp 245–253

    Google Scholar 

  • Mao W, Shu J, Hu J et al (2002) Displacive transition in magnesiowüstite. J Phys Condens Matter 14:11349

    Article  Google Scholar 

  • Mao WL, Shen G, Prakapenka VB et al (2004) Ferromagnesian postperovskite silicates in the D″ layer of the Earth. Proc Natl Acad Sci USA 101:15867–15869

    Article  Google Scholar 

  • Micoulaut M, Cormier L, Henderson GS (2006) The structure of amorphous, crystalline and liquid GeO2. J Phys Condens Matter 18:R753

    Article  Google Scholar 

  • Ming L-C, Bassett WA (1975) High-pressure phase transformations in the system of MgSiO3–FeSiO3. Earth Planet Sci Lett 27:85–89

    Article  Google Scholar 

  • Ming LC, Kim Y-H, Uchida T et al (2006) In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation. Am Miner 91:120–126

    Article  Google Scholar 

  • Murakami M, Hirose K, Ono S, Ohishi Y (2003) Stability of CaCl2-type and α-PbO2-type SiO2 at high pressure and temperature determined by in-situ X-ray measurements. Geophys Res Lett 30:1207

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K et al (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858

    Article  Google Scholar 

  • Nagai T, Hattori T, Tsuchiya T, Yamanaka T (1998) First observation of FeGeO3-perovskite under high pressure. Solid State Commun 107:223–225

    Article  Google Scholar 

  • Nakatsuka D, Yoshino T, Kano J et al (2013) High-pressure synthesis, crystal structure and magnetic property of ilmenite-type FeGeO3. J Solid State Chem 198:520–524

    Article  Google Scholar 

  • Nakatsuka A, Kuribayashi S, Nakayama N et al (2015) Temperature dependence of crystal structure of CaGeO3 high-pressure perovskite phase and experimental determination of its Debye temperatures studied by low- and high-temperature single-crystal X-ray diffraction. Am Miner 100:1190–1202

    Article  Google Scholar 

  • Nishio-Hamane D, Yagi T, Ohshiro M et al (2010) Decomposition of perovskite FeTiO3 into wüstite Fe1-x Ti0.5x O and orthorhombic FeTi3O7 at high pressure. Phys Rev B 82:092103

    Article  Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430:445–448

    Article  Google Scholar 

  • Ono S, Hirose K, Nishiyama N, Isshiki M (2002) Phase boundary between rutile-type and CaCl2-type germanium dioxide determined by in situ X-ray observations. Am Miner 87:99–102

    Article  Google Scholar 

  • Ono S, Tsuchiya T, Hirose K, Ohishi Y (2003a) Phase transition between the CaCl2-type and α-PbO2-type structures of germanium dioxide. Phys Rev B 68:134108

    Article  Google Scholar 

  • Ono S, Tsuchiya T, Hirose K, Ohishi Y (2003b) High-pressure form of pyrite-type germanium dioxide. Phys Rev B 68:014103

    Article  Google Scholar 

  • Pakhomova A, Ismailova L, Bykova E et al (2017) A new high-pressure phase transition in clinoferrosilite: in situ single-crystal X-ray diffraction study. Am Miner 102:666–673

    Article  Google Scholar 

  • Plonka AM, Dera P, Irmen P et al (2012) β-diopside, a new ultrahigh-pressure polymorph of CaMgSi2O6 with six-coordinated silicon. Geophys Res Lett 39:L24307

    Article  Google Scholar 

  • Prakapenka VB, Dubrovinsky LS, Shen G et al (2003) α-PbO2-type high-pressure polymorph of GeO2. Phys Rev B 67:132101

    Article  Google Scholar 

  • Prakapenka VB, Shen G, Dubrovinsky LS et al (2004) High pressure induced phase transformation of SiO2 and GeO2: difference and similarity. J Phys Chem Solids 65(8):1537–1545

    Article  Google Scholar 

  • Prakapenka VB, Kubo A, Kuznetsov A et al (2008) Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res 28(3):225–235

    Article  Google Scholar 

  • Prescher C, Prakapenka VB (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res 35(3):223–230

    Article  Google Scholar 

  • Redhammer GJ, Senyshyn A, Tippelt G et al (2012) Magnetic and low-temperature structural behavior of clinopyroxene-type FeGeO3: a neutron diffraction, magnetic susceptibility, and 57Fe Mössbauer study. Am Miner 97:694–706

    Article  Google Scholar 

  • Ringwood AE, Seabrook M (1963) High-pressure phase transformations in germanate pyroxenes and related compounds. J Geophys Res 68:4601–4609

    Article  Google Scholar 

  • Royen P, Forwerg W (1963) Darstellung und kristallographische Eigenschaften der Metagermanate des Mangans, Eisens und Kobalts. Z Für Anorg Allg Chem 326:113–126

    Article  Google Scholar 

  • Sato H, Endo S, Sugiyama M et al (1991) Baddeleyite-type high-pressure phase of TiO2. Science 251:786

    Article  Google Scholar 

  • Shiraki K, Tsuchiya T, Ono S (2003) Structural refinements of high-pressure phases in germanium dioxide. Acta Crystallogr B 59:701–708

    Article  Google Scholar 

  • Shu J, Mao H, Hu J et al (1998) Single-crystal X-ray diffraction of wüstite to 30 GPa hydrostatic pressure. Neues Jahrb Für Miner 309–323

  • Shukla G, Topsakal M, Wentzcovitch RM (2015) Spin crossovers in iron-bearing MgSiO3 and MgGeO3: their influence on the post-perovskite transition. Phys Earth Planet Inter 249:11–17

    Article  Google Scholar 

  • Stackhouse S, Brodholt JP, Price GD (2006) Elastic anisotropy of FeSiO3 end-members of the perovskite and post-perovskite phases. Geophys Res Lett 33:L01304

    Article  Google Scholar 

  • Stan CV, Dutta R, Cava RJ, Prakapenka VB, Duffy TS (2017) High-pressure study of perovskites and post-perovskites in the (Mg,Fe)GeO3 System. Inorg Chem 56(14):8026–8035

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2006) High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. Phys Chem Miner 32:721

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2007) Solubility of FeO in (Mg,Fe)SiO3 perovskite and the post-perovskite phase transition. Phys Earth Planet Inter 160:319–325

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2010) Structural distortion of CaSnO3 perovskite under pressure and the quenchable post-perovskite phase as a low-pressure analogue to MgSiO3. Phys Earth Planet Inter 181:54–59

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Tsuchiya T, Tsuchiya J (2011) Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressures. Proc Natl Acad Sci 108:1252–1255

    Article  Google Scholar 

  • Weber H-P (1983) Ferrosilite III, the high-temperature polymorph of FeSiO3. Acta Crystallogr C 39:1–3

    Article  Google Scholar 

  • Wicks JK, Jackson JM, Sturhahn W et al (2015) Thermal equation of state and stability of (Mg0.06Fe0.94)O. Phys Earth Planet Inter 249:28–42

    Article  Google Scholar 

  • Wilson NC, Russo SP, Muscat J, Harrison NM (2005) High-pressure phases of FeTiO3 from first principles. Phys Rev B 72:024110

    Article  Google Scholar 

  • Wu X, Qin S, Dubrovinsky L (2011) Investigation into high-pressure behavior of MnTiO3: X-ray diffraction and Raman spectroscopy with diamond anvil cells. Geosci Front 2:107–114

    Article  Google Scholar 

  • Yusa H, Tsuchiya T, Akaogi M et al (2014) Postperovskite phase transition of ZnGeO3: comparative crystal chemistry of postperovskite phase transition from germanate perovskites. Inorg Chem 53:11732–11739

    Article  Google Scholar 

  • Zhang L, Meng Y, Yang W et al (2014) Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle. Science 344:877–882

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. J. Wicks, S. Tkachev, C. Prescher, and J. Krizan for experimental assistance. This work was supported by the National Science Foundation (EAR-1415321). The authors’ acknowledge use of the Advanced Photon Source, an Office of Science User Facility, U.S. Department of Energy. GeoSoilEnviroCARS (GSECARS, Sector 13), is supported by the NSF Earth Sciences (Grant No: EAR-1128799) and the Department of Energy, Geosciences (Grant No. DE-FG02-94ER14466). C. Stan acknowledges support from DOE Office of Science User Facility contract No. DE-AC02-05CH11231. The use of the gas-loading facility at GSECARS was partially supported by the Consortium for Materials Properties Research in Earth Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dutta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 108 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, R., Tracy, S.J., Stan, C.V. et al. Phase stability of iron germanate, FeGeO3, to 127 GPa. Phys Chem Minerals 45, 367–379 (2018). https://doi.org/10.1007/s00269-017-0927-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0927-9

Keywords

Navigation