Skip to main content

Advertisement

Log in

Enhancement of glioma-specific immunity in mice by “NOBEL”, an insulin-like growth factor 1 receptor antisense oligodeoxynucleotide

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Autologous glioblastoma multiforme tumor cells treated with an antisense oligodeoxynucleotide (AS-ODN) targeting insulin-like growth factor receptor-1 (IGF-1R) are the basis of a vaccine with therapeutic effects on tumor recurrence in a pilot clinical trial. As a preface to continued clinical investigation of this vaccination strategy, we have studied the contribution of an optimized IGF-1R AS-ODN, designated “NOBEL”, to the induction of immunity to mouse GL261 glioma cells. The impact of NOBEL on mechanisms contributing to the development of GL261 immunity was first examined in the periphery. GL261 cells are naturally immunogenic when implanted into the flanks of congenic C57BL/6 mice, immunizing rather than forming tumors in around 50 % of these animals but causing tumors in the majority of mice lacking T and B lymphocytes. Overnight treatment with NOBEL in vitro reduces IGF-1R expression by GL261 cells but has minimal effect on cell viability and does not reduce the capacity of the cells to form tumors upon implantation. In contrast, tumors are extremely rare when GL261 cells are mixed with NOBEL at inoculation into the flanks of C57BL/6, and the recipient mice become immune to subcutaneous and intracranial challenge with untreated GL261. Adaptive immune mechanisms contribute to this effect, as immunocompromised mice fail to either fully control tumor formation or develop immunity following flank administration of the GL261/NOBEL mix. NOBEL’s structure has known immunostimulatory motifs that likely contribute to the immunogenicity of the mix, but its specificity for IGF-1R mRNA is also important as a similarly structured sense molecule is not effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AS-ODN:

Antisense oligodeoxynucleotide

APC:

Antigen presenting cells

BBB:

Blood–brain barrier

B2M−/− :

Beta-2 microglobulin knockout (CD8 T deficient)

CELISA:

Cell-based ELISA

DLN:

Draining lymph nodes

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine sera

GBM:

Glioblastoma multiforme

IGF-1R:

Insulin-like growth factor 1 receptor

JHD−/− :

Antibody heavy chain knockout (B cell deficient)

MFI:

Mean fluorescence intensity

NKT:

Natural killer T cells

PBS:

Phosphate-buffered saline

qRT-PCR:

Quantitative real-time polymerase chain reaction

Rag2−/− :

Recombination activating gene 2 knockout (T and B deficient)

TLR9:

Toll-like receptor 9

References

  1. Smith JS, Jenkins RB (2000) Genetic alterations in adult diffuse glioma: occurrence, significance, and prognostic implications. Front Biosci 5:D213–D231

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN (2006) Molecular pathology of malignant gliomas. Annu Rev Pathol 1:97–117

    Article  CAS  PubMed  Google Scholar 

  3. Avgeropoulos NG, Batchelor TT (1999) New treatment strategies for malignant gliomas. Oncologist 4:209–224

    CAS  PubMed  Google Scholar 

  4. Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M (2011) Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011:732413

    Article  PubMed Central  PubMed  Google Scholar 

  5. Madan RA, Gulley JL (2011) Therapeutic cancer vaccine fulfills the promise of immunotherapy in prostate cancer. Immunotherapy 3:27–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Disis ML (2011) Immunologic biomarkers as correlates of clinical response to cancer immunotherapy. Cancer Immunol Immunother 60:433–442

    Article  CAS  PubMed  Google Scholar 

  7. Pachter JS, de Vries HE, Fabry Z (2003) The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 62:593–604

    CAS  PubMed  Google Scholar 

  8. Candolfi M, Curtin JF, Yagiz K et al (2011) B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma. Neoplasia 13:947–960

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Tran Thang NN, Derouazi M, Philippin G et al (2010) Immune infiltration of spontaneous mouse astrocytomas is dominated by immunosuppressive cells from early stages of tumor development. Cancer Res 70:4829–4839

    Article  PubMed  Google Scholar 

  10. Vauleon E, Avril T, Collet B, Mosser J, Quillien V (2010) Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol. Article ID 689171. doi:10.1155/2010/689171

  11. Andrews DW, Resnicoff M, Flanders AE et al (2001) Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 19:2189–2200

    CAS  PubMed  Google Scholar 

  12. Hernandez-Sanchez C, Blakesley V, Kalebic T, Helman L, LeRoith D (1995) The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. J Biol Chem 270:29176–29181

    Article  CAS  PubMed  Google Scholar 

  13. Liu S, Jin F, Dai W, Yu Y (2010) Antisense treatment of IGF-IR enhances chemosensitivity in squamous cell carcinomas of the head and neck. Eur J Cancer 46:1744–1751

    Article  CAS  PubMed  Google Scholar 

  14. Shen YM, Yang XC, Yang C, Shen JK (2008) Enhanced therapeutic effects for human pancreatic cancer by application K-ras and IGF-IR antisense oligodeoxynucleotides. World J Gastroenterol 14:5176–5185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Resnicoff M, Huang Z, Herbert D, Abraham D, Baserga R (1997) A novel class of peptides that induce apoptosis and abrogate tumorigenesis in vivo. Biochem Biophys Res Commun 240:208–212

    Article  CAS  PubMed  Google Scholar 

  16. Durfort T, Tkach M, Meschaninova MI et al (2012) Small interfering RNA targeted to IGF-IR delays tumor growth and induces proinflammatory cytokines in a mouse breast cancer model. PLoS ONE 7:e29213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Schillaci R, Salatino M, Cassataro J et al (2006) Immunization with murine breast cancer cells treated with antisense oligodeoxynucleotides to type I insulin-like growth factor receptor induced an antitumoral effect mediated by a CD8+ response involving Fas/Fas ligand cytotoxic pathway. J Immunol 176:3426–3437

    Article  CAS  PubMed  Google Scholar 

  18. Stein CA (1995) Does antisense exist? Nat Med 1:1119–1121

    Article  CAS  PubMed  Google Scholar 

  19. Stein CA, Subasinghe C, Shinozuka K, Cohen JS (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16:3209–3221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Krieg AM, Yi AK, Matson S et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi N, Hong C, Klinman DM, Shirota H (2013) Oligodeoxynucleotides expressing polyguanosine motifs promote antitumor activity through the upregulation of IL-2. J Immunol 190:1882–1889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Peng G, Guo Z, Kiniwa Y et al (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309:1380–1384

    Article  CAS  PubMed  Google Scholar 

  23. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036

    Article  CAS  PubMed  Google Scholar 

  24. Iho S, Yamamoto T, Takahashi T, Yamamoto S (1999) Oligodeoxynucleotides containing palindrome sequences with internal 5′-CpG-3′ act directly on human NK and activated T cells to induce IFN-gamma production in vitro. J Immunol 163:3642–3652

    CAS  PubMed  Google Scholar 

  25. Baserga R, Resnicoff M, D’Ambrosio C, Valentinis B (1997) The role of the IGF-I receptor in apoptosis. Vitam Horm 53:65–98

    Article  CAS  PubMed  Google Scholar 

  26. Szatmari T, Lumniczky K, Desaknai S et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97:546–553

    Article  CAS  PubMed  Google Scholar 

  27. Ausman JI, Shapiro WR, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res 30:2394–2400

    CAS  PubMed  Google Scholar 

  28. Phares TW, Kean RB, Mikheeva T, Hooper DC (2006) Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol 176:7666–7675

    Article  CAS  PubMed  Google Scholar 

  29. Resnicoff M, Abraham D, Yutanawiboonchai W et al (1995) The insulin-like growth factor I receptor protects tumor cells from apoptosis in vivo. Cancer Res 55:2463–2469

    CAS  PubMed  Google Scholar 

  30. Resnicoff M, Li W, Basak S, Herlyn D, Baserga R, Rubin R (1996) Inhibition of rat C6 glioblastoma tumor growth by expression of insulin-like growth factor I receptor antisense mRNA. Cancer Immunol Immunother 42:64–68

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Turbyville T, Fritz A, Whitesell L (1998) Inhibition of insulin-like growth factor I receptor expression in neuroblastoma cells induces the regression of established tumors in mice. Cancer Res 58:5432–5438

    CAS  PubMed  Google Scholar 

  32. Bernasconi NL, Traggiai E, Lanzavecchia A (2002) Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298:2199–2202

    Article  CAS  PubMed  Google Scholar 

  33. Jung J, Yi AK, Zhang X, Choe J, Li L, Choi YS (2002) Distinct response of human B cell subpopulations in recognition of an innate immune signal, CpG DNA. J Immunol 169:2368–2373

    Article  CAS  PubMed  Google Scholar 

  34. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760

    Article  CAS  PubMed  Google Scholar 

  35. Samulowitz U, Weber M, Weeratna R et al (2010) A novel class of immune-stimulatory CpG oligodeoxynucleotides unifies high potency in type I interferon induction with preferred structural properties. Oligonucleotides 20:93–101

    Article  CAS  PubMed  Google Scholar 

  36. Alizadeh D, Zhang L, Brown CE, Farrukh O, Jensen MC, Badie B (2010) Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy. Clin Cancer Res 16:3399–3408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Grauer OM, Molling JW, Bennink E et al (2008) TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol 181:6720–6729

    Article  CAS  PubMed  Google Scholar 

  38. Biollaz G, Bernasconi L, Cretton C et al (2009) Site-specific anti-tumor immunity: differences in DC function, TGF-beta production and numbers of intratumoral Foxp3+ Treg. Eur J Immunol 39:1323–1333

    Article  CAS  PubMed  Google Scholar 

  39. Brown CE, Starr R, Martinez C et al (2009) Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells. Cancer Res 69:8886–8893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Smith KE, Fritzell S, Badn W et al (2009) Cure of established GL261 mouse gliomas after combined immunotherapy with GM-CSF and IFNgamma is mediated by both CD8+ and CD4+ T-cells. Int J Cancer 124:630–637

    Article  CAS  PubMed  Google Scholar 

  41. Perricone MA, Smith KA, Claussen KA et al (2004) Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. J Immunother 27:273–281

    Article  CAS  PubMed  Google Scholar 

  42. Shah S, Divekar AA, Hilchey SP et al (2005) Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 117:574–586

    Article  CAS  PubMed  Google Scholar 

  43. Ghulam Muhammad AK, Candolfi M, King GD et al (2009) Antiglioma immunological memory in response to conditional cytotoxic/immune-stimulatory gene therapy: humoral and cellular immunity lead to tumor regression. Clin Cancer Res 15:6113–6127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge technical support provided by Rhonda B. Kean and Emily Bongiorno. This work was funded by the generous support of the Albert F. Stevens Foundation through a grant to David W. Andrews.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Craig Hooper.

Additional information

Mélanie Morin-Brureau and Kirsten M. Hooper made equal contributions to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morin-Brureau, M., Hooper, K.M., Prosniak, M. et al. Enhancement of glioma-specific immunity in mice by “NOBEL”, an insulin-like growth factor 1 receptor antisense oligodeoxynucleotide. Cancer Immunol Immunother 64, 447–457 (2015). https://doi.org/10.1007/s00262-015-1654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1654-z

Keywords

Navigation