Skip to main content

Advertisement

Log in

Immunologic biomarkers as correlates of clinical response to cancer immunotherapy

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Over the last few years, several newly developed immune-based cancer therapies have been shown to induce clinical responses in significant numbers of patients. As a result, there is a need to identify immune biomarkers capable of predicting clinical response. If there were laboratory parameters that could define patients with improved disease outcomes after immunomodulation, product development would accelerate, optimization of existing immune-based treatments would be facilitated and patient selection for specific interventions might be optimized. Although there are no validated cancer immunologic biomarkers that are predictive of clinical response currently in widespread use, there is much published literature that has informed investigators as to which markers may be the most promising. Population-based studies of endogenous tumor immune infiltrates and gene expression analyses have identified specific cell populations and phenotypes of immune cells that are most likely to mediate anti-tumor immunity. Further, clinical trials of cancer vaccines and other cancer directed immunotherapy have identified candidate immunologic biomarkers that are statistically associated with beneficial clinical outcomes after immune-based cancer therapies. Biomarkers that measure the magnitude of the Type I immune response generated with immune therapy, epitope spreading, and autoimmunity are readily detected in the peripheral blood and, in clinical trials of cancer immunotherapy, have been associated with response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

APC:

Antigen-presenting cells

CI:

Confidence interval

CTLA-4:

Cytotoxic T-lymphocyte antigen 4

DFS:

Disease-free survival

DTH:

Delayed type hypersensitivity

GM-CSF:

Granulocyte macrophage colony stimulating factor

HER2:

HER-2/neu

HPV:

Human papilloma virus

HR:

Hazard ratio

IFN:

Interferon

IL:

Interleukin

KLH:

Keyhole limpet hemocyanin

NCI:

National Cancer Institute

NK:

Natural killer

OS:

Overall survival

PDL:

Programmed death ligand

PSA:

Prostate-specific antigen

RR:

Relative risk

SNP:

Single nucleotide polymorphisms

TGF:

Transforming growth factor

References

  1. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    Article  CAS  PubMed  Google Scholar 

  2. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  Google Scholar 

  3. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay KK et al (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363(14):1324–1334

    Article  CAS  PubMed  Google Scholar 

  4. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 206(8):1717–1725

    Article  CAS  PubMed  Google Scholar 

  5. Subramanian J, Simon R (2010) What should physicians look for in evaluating prognostic gene-expression signatures? Nat Rev Clin Oncol 7(6):327–334

    Article  PubMed  Google Scholar 

  6. Reyal F, van Vliet MH, Armstrong NJ, Horlings HM, de Visser KE, Kok M, Teschendorff AE, Mook S, van ‘t Veer L, Caldas C et al (2008) A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation immune response and RNA splicing modules in breast cancer. Br Cancer Res 10(6):R93

    Article  Google Scholar 

  7. Staaf J, Ringner M, Vallon-Christersson J, Jonsson G, Bendahl PO, Holm K, Arason A, Gunnarsson H, Hegardt C, Agnarsson BA et al (2010) Identification of subtypes in human epidermal growth factor receptor 2–positive breast cancer reveals a gene signature prognostic of outcome. J Clin Oncol 28(11):1813–1820

    Article  PubMed  Google Scholar 

  8. Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8(8):R157

    Article  PubMed  Google Scholar 

  9. Yamshchikov GV, Mullins DW, Chang CC, Ogino T, Thompson L, Presley J, Galavotti H, Aquila W, Deacon D, Ross W et al (2005) Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J Immunol 174(11):6863–6871

    CAS  PubMed  Google Scholar 

  10. Mandruzzato S, Callegaro A, Turcatel G, Francescato S, Montesco MC, Chiarion-Sileni V, Mocellin S, Rossi CR, Bicciato S, Wang E et al (2006) A gene expression signature associated with survival in metastatic melanoma. J Transl Med 4:50

    Article  PubMed  Google Scholar 

  11. Bogunovic D, O’Neill DW, Belitskaya-Levy I, Vacic V, Yu YL, Adams S, Darvishian F, Berman R, Shapiro R, Pavlick AC et al (2009) Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci USA 106(48):20429–20434

    Article  CAS  PubMed  Google Scholar 

  12. Roepman P, Jassem J, Smit EF, Muley T, Niklinski J, van de Velde T, Witteveen AT, Rzyman W, Floore A, Burgers S et al (2009) An immune response enriched 72-gene prognostic profile for early-stage non-small-cell lung cancer. Clin Cancer Res 15(1):284–290

    Article  CAS  PubMed  Google Scholar 

  13. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213

    Article  CAS  PubMed  Google Scholar 

  15. Kondratiev S, Sabo E, Yakirevich E, Lavie O, Resnick MB et al (2004) Intratumoral CD8+ T lymphocytes as a prognostic factor of survival in endometrial carcinoma. Clin Cancer Res 10(13):4450–4456

    Article  PubMed  Google Scholar 

  16. Ladanyi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, Gaudi I, Timar J (2007) Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 56(9):1459–1469

    Article  PubMed  Google Scholar 

  17. Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, Suzuki Y, Shintaku I, Nagura H, Ohtani H (2001) Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res 61(13):5132–5136

    CAS  PubMed  Google Scholar 

  18. Oshikiri T, Miyamoto M, Shichinohe T, Suzuoki M, Hiraoka K, Nakakubo Y, Shinohara T, Itoh T, Kondo S, Katoh H (2003) Prognostic value of intratumoral CD8+ T lymphocyte in extrahepatic bile duct carcinoma as essential immune response. J Surg Oncol 84(4):224–228

    Article  PubMed  Google Scholar 

  19. Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951

    Article  CAS  PubMed  Google Scholar 

  20. Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001) Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 61(10):3932–3936

    CAS  PubMed  Google Scholar 

  21. Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ (2009) Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 137(4):1270–1279

    Article  CAS  PubMed  Google Scholar 

  22. Yamada N, Oizumi S, Kikuchi E, Shinagawa N, Konishi-Sakakibara J, Ishimine A, Aoe K, Gemba K, Kishimoto T, Torigoe T et al (2010) CD8 +tumor-infiltrating lymphocytes predict favorable prognosis in malignant pleural mesothelioma after resection. Cancer Immunol Immunother 59(10):1543–1549

    Article  CAS  PubMed  Google Scholar 

  23. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666

    Article  CAS  PubMed  Google Scholar 

  24. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380

    Article  PubMed  Google Scholar 

  25. Ladoire S, Arnould L, Apetoh L, Coudert B, Martin F, Chauffert B, Fumoleau P, Ghiringhelli F (2008) Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res 14(8):2413–2420

    Article  CAS  PubMed  Google Scholar 

  26. Liotta F, Gacci M, Frosali F, Querci V, Vittori G, Lapini A, Santarlasci V, Serni S, Cosmi L, Maggi L et al. 2010 Frequency of regulatory T cells in peripheral blood and in tumour-infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma. BJU Int. doi:10.1111/j.1464-410X.2010.09555.x

  27. Shen Z, Zhou S, Wang Y, Li RL, Zhong C, Liang C, Sun Y (2010) Higher intratumoral infiltrated Foxp3 + Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. J Cancer Res Clin Oncol 136(10):1585–1595

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu K, Nakata M, Hirami Y, Yukawa T, Maeda A, Tanemoto K (2010) Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol 5(5):585–590

    PubMed  Google Scholar 

  29. Lee NR, Song EK, Jang KY, Choi HN, Moon WS, Kwon K, Lee JH, Yim CY, Kwak JY (2008) Prognostic impact of tumor infiltrating FOXP3 positive regulatory T cells in diffuse large B-cell lymphoma at diagnosis. Leuk Lymphoma 49(2):247–256

    Article  CAS  PubMed  Google Scholar 

  30. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27(2):186–192

    Article  PubMed  Google Scholar 

  31. Nakanishi J, Wada Y, Matsumoto K, Azuma M, Kikuchi K, Ueda S (2007) Overexpression of B7–H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56(8):1173–1182

    Article  CAS  PubMed  Google Scholar 

  32. Thompson RH, Dong H, Kwon ED (2007) Implications of B7–H1 expression in clear cell carcinoma of the kidney for prognostication and therapy. Clin Cancer Res 13(2 Pt 2):709s–715s

    Article  CAS  PubMed  Google Scholar 

  33. Mizukami Y, Kono K, Maruyama T, Watanabe M, Kawaguchi Y, Kamimura K, Fujii H (2008) Downregulation of HLA Class I molecules in the tumour is associated with a poor prognosis in patients with oesophageal squamous cell carcinoma. Br J Cancer 99(9):1462–1467

    Article  CAS  PubMed  Google Scholar 

  34. Ogino T, Shigyo H, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, Ferrone S (2006) HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res 66(18):9281–9289

    Article  CAS  PubMed  Google Scholar 

  35. Desruisseau S, Palmari J, Giusti C, Romain S, Martin PM, Berthois Y (2006) Determination of TGFbeta1 protein level in human primary breast cancers and its relationship with survival. Br J Cancer 94(2):239–246

    Article  CAS  PubMed  Google Scholar 

  36. Disis ML (2010) Immune regulation of cancer. J Clin Oncol 28(29):4531–4538

    Article  CAS  PubMed  Google Scholar 

  37. Slingluff CL Jr, Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C, Johansen N, Grosh WW, Yamshchikov GV, Neese PY et al (2007) Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res 13(21):6386–6395

    Article  CAS  PubMed  Google Scholar 

  38. Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C, Whiteside T, Butterfield LH, Weiner L (2009) Immunogenicity and antitumor effects of vaccination with peptide vaccine ± granulocyte-monocyte colony-stimulating factor and/or IFN-alpha2b in advanced metastatic melanoma: eastern cooperative oncology group phase II Trial E1696. Clin Cancer Res 15(4):1443–1451

    Article  CAS  PubMed  Google Scholar 

  39. Gulley JL, Arlen PM, Madan RA, Tsang KY, Pazdur MP, Skarupa L, Jones JL, Poole DJ, Higgins JP, Hodge JW et al (2010) Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol Immunother 59(5):663–674

    Article  CAS  PubMed  Google Scholar 

  40. Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H, Coveler AL, Childs JS, Higgins DM, Fintak PA et al (2009) Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 27(28):4685–4692

    Article  CAS  PubMed  Google Scholar 

  41. Barth RJ Jr, Fischer DA, Wallace PK, Channon JY, Noelle R, Gui J, Ernstoff MS (2010) A randomized trial of ex vivo CD40L activation of a DC vaccine in colorectal cancer patients: tumor-specific immune responses are associated with improved survival. Clin Cancer Res 16(22):5548–5556

    Google Scholar 

  42. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW et al (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361(19):1838–1847

    Article  CAS  PubMed  Google Scholar 

  43. Disis ML, Schiffman K, Gooley TA, McNeel DG, Rinn K, Knutson KL (2000) Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after HER-2/neu peptide immunization. Clin Cancer Res 6(4):1347–1350

    CAS  PubMed  Google Scholar 

  44. Baars A, Claessen AM, van den Eertwegh AJ, Gall HE, Stam AG, Meijer S, Giaccone G, Meijer CJ, Scheper RJ, Wagstaff J et al (2000) Skin tests predict survival after autologous tumor cell vaccination in metastatic melanoma: experience in 81 patients. Ann Oncol 11(8):965–970

    Article  CAS  PubMed  Google Scholar 

  45. Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR, Goemann M, Coleman J, Grochow L, Donehower RC (2001) Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 19(1):145–156

    CAS  PubMed  Google Scholar 

  46. Lopez MN, Pereda C, Segal G, Munoz L, Aguilera R, Gonzalez FE, Escobar A, Ginesta A, Reyes D, Gonzalez R (2009) Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor beta-expressing T cells. J Clin Oncol 27(6):945–952

    Article  CAS  PubMed  Google Scholar 

  47. de Vries IJ, Bernsen MR, Lesterhuis WJ, Scharenborg NM, Strijk SP, Gerritsen MJ, Ruiter DJ, Figdor CG, Punt CJ, Adema GJ (2005) Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 23(24):5779–5787

    Article  PubMed  Google Scholar 

  48. Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D, Wang HJ, Elashoff RM, McBride WH, Mukherji B et al (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9(3):998–1008

    CAS  PubMed  Google Scholar 

  49. Wierecky J, Muller MR, Wirths S, Halder-Oehler E, Dorfel D, Schmidt SM, Hantschel M, Brugger W, Schroder S, Horger MS et al (2006) Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res 66(11):5910–5918

    Article  CAS  PubMed  Google Scholar 

  50. Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K (2002) Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20(11):2624–2632

    Article  CAS  PubMed  Google Scholar 

  51. Salazar LG, Goodell V, O’Meara M et al (2009) Persistent immunity and survival after immunization with a HER-2/neu vaccine. J Clin Oncol (Meeting Abstracts) 27(15S):2010

    Google Scholar 

  52. Quaglino P, Marenco F, Osella-Abate S, Cappello N, Ortoncelli M, Salomone B, Fierro MT, Savoia P, Bernengo MG (2010) Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: results from a single-institution hospital-based observational cohort study. Ann Oncol 21(2):409–414

    Article  CAS  PubMed  Google Scholar 

  53. Phan GQ, Attia P, Steinberg SM, White DE, Rosenberg SA (2001) Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol 19(15):3477–3482

    CAS  PubMed  Google Scholar 

  54. Beck KE, Blansfield JA, Tran KQ, Feldman AL, Hughes MS, Royal RE, Kammula US, Topalian SL, Sherry RM, Kleiner D et al (2006) Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol 24(15):2283–2289

    Article  CAS  PubMed  Google Scholar 

  55. Gogas H, Ioannovich J, Dafni U, Stavropoulou-Giokas C, Frangia K, Tsoutsos D, Panagiotou P, Polyzos A, Papadopoulos O, Stratigos A (2006) Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 354(7):709–718

    Article  CAS  PubMed  Google Scholar 

  56. Bouwhuis MG, Suciu S, Collette S, Aamdal S, Kruit WH, Bastholt L, Stierner U, Sales F, Patel P, Punt CJ (2009) Autoimmune antibodies and recurrence-free interval in melanoma patients treated with adjuvant interferon. J Natl Cancer Inst 101(12):869–877

    Article  CAS  PubMed  Google Scholar 

  57. Sittler T, Zhou J, Park J, Yuen NK, Sarantopoulos S, Mollick J, Salgia R, Giobbie-Hurder A, Dranoff G, Hodi FS (2008) Concerted potent humoral immune responses to autoantigens are associated with tumor destruction and favorable clinical outcomes without autoimmunity. Clin Cancer Res 14(12):3896–3905

    Article  CAS  PubMed  Google Scholar 

  58. Hartmann TB, Bazhin AV, Schadendorf D, Eichmuller SB (2005) SEREX identification of new tumor antigens linked to melanoma-associated retinopathy. Int J Cancer 114(1):88–93

    Article  CAS  PubMed  Google Scholar 

  59. Di Rosa F, Pabst R (2005) The bone marrow: a nest for migratory memory T cells. Trends Immunol 26(7):360–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NCI grants R01 CA129517, CA136632 and U01CA154967. I thank Ms. Molly Boettcher for expert assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary L. Disis.

Additional information

This paper is a Focussed Research Review based on a presentation given at the 8th Annual Meeting of the Association for Cancer Immunotherapy (CIMT), held in Mainz, Germany, 26–28th May, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Disis, M.L. Immunologic biomarkers as correlates of clinical response to cancer immunotherapy. Cancer Immunol Immunother 60, 433–442 (2011). https://doi.org/10.1007/s00262-010-0960-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0960-8

Keywords

Navigation