Skip to main content
Log in

C-arm flat-panel CT arthrography of the wrist and elbow: first experiences in human cadavers

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the optimal intra-articular iodine concentration for C-arm flat-panel computed tomography (FPCT) arthrography using advanced joint phantoms and to evaluate its application in human cadaveric wrists and elbows. Multi-detector (MD) CT served as the standard of reference.

Materials and methods

Joint phantoms and 10 human cadaveric wrist and elbow joints were scanned with C-arm FPCT (5-s, 8-s, and 20-s runs) and standard MDCT using different and optimal concentrations of iodinated contrast material. CT numbers of contrast material, tissue, and noise were measured and contrast-to-noise ratios (CNR) calculated for quantitative analysis. Image and depiction of cartilage, bone, and soft tissues were rated. Radiation doses were compared.

Results

In FPCT, iodine concentrations positively correlated with CT numbers and noise of contrast material and with radiation dose (r = 0.713–0.996, p < 0.05 each). At an iodine concentration of 45 mg/ml, CNR of cartilage and soft tissues were highest for all FPCT acquisitions and higher than in MDCT. The 20-s FPCT run performed best for image quality and depiction of anatomical structures and was rated overall equal to MDCT (p = 0.857).

Conclusion

The optimal iodine concentration for C-arm FPCT arthrography in this study is 45 mg/ml, leading to superior CNR and image quality for an optimal FPCT protocol compared with standard MDCT arthrography in human cadaveric joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roemer FW, Crema MD, Trattnig S, Guermazi A. Advances in imaging of osteoarthritis and cartilage. Radiology. 2011;260(2):332–54.

    Article  PubMed  Google Scholar 

  2. De Filippo M, Bertellini A, Pogliacomi F, Sverzellati N, Corradi D, Garlaschi G, et al. Multidetector computed tomography arthrography of the knee: diagnostic accuracy and indications. Eur J Radiol. 2009;70(2):342–51.

    Article  PubMed  Google Scholar 

  3. De Filippo M, Pogliacomi F, Bertellini A, Araoz PA, Averna R, Sverzellati N, et al. MDCT arthrography of the wrist: diagnostic accuracy and indications. Eur J Radiol. 2010;74(1):221–5.

    Article  PubMed  Google Scholar 

  4. Cochet H, Pele E, Amoretti N, Brunot S, Lafenetre O, Hauger O. Anterolateral ankle impingement: diagnostic performance of MDCT arthrography and sonography. AJR Am J Roentgenol. 2010;194(6):1575–80.

    Article  PubMed  Google Scholar 

  5. Fischer W, Bohndorf K, Kreitner KF, Schmitt R, Wortler K, Zentner J. Indications for CT and MR arthrography–recommendations of the musculoskeletal workgroup of the DRG. Rofo. 2009;181(5):441–6.

    Article  PubMed  CAS  Google Scholar 

  6. El-Khoury GY, Alliman KJ, Lundberg HJ, Rudert MJ, Brown TD, Saltzman CL. Cartilage thickness in cadaveric ankles: measurement with double-contrast multi-detector row CT arthrography versus MR imaging. Radiology. 2004;233(3):768–73.

    Article  PubMed  Google Scholar 

  7. Prokop M. General principles of MDCT. Eur J Radiol. 2003;45 Suppl 1:S4–10.

    Article  PubMed  Google Scholar 

  8. De Filippo M, Bertellini A, Sverzellati N, Pogliacomi F, Costantino C, Vitale M, et al. Multidetector computed tomography arthrography of the shoulder: diagnostic accuracy and indications. Acta Radiol. 2008;49(5):540–9.

    Article  PubMed  Google Scholar 

  9. Kyriakou Y, Struffert T, Dorfler A, Kalender WA. Basic principles of flat detector computed tomography (FD-CT). Radiologe. 2009;49(9):811–9.

    Article  PubMed  CAS  Google Scholar 

  10. Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT). Eur Radiol. 2007;17(11):2767–79.

    Article  PubMed  Google Scholar 

  11. De Cock J, Mermuys K, Goubau J, Van Petegem S, Houthoofd B, Casselman JW. Cone-beam computed tomography: a new low dose, high resolution imaging technique of the wrist, presentation of three cases with technique. Skeletal Radiol. 2012;41(1):93–6.

    Article  PubMed  Google Scholar 

  12. Ramdhian-Wihlm R, Le Minor JM, Schmittbuhl M, Jeantroux J, Mahon PM, Veillon F, et al. Cone-beam computed tomography arthrography: an innovative modality for the evaluation of wrist ligament and cartilage injuries. Skeletal Radiol. 2012;41(8):963–9.

    Article  PubMed  Google Scholar 

  13. Wang G, Crawford CR, Kalender WA. Multirow detector and cone-beam spiral/helical CT. IEEE Trans Med Imaging. 2000;19(9):817–21.

    Article  PubMed  CAS  Google Scholar 

  14. Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40(5):265–73.

    Article  PubMed  CAS  Google Scholar 

  15. Jelinek J, Overton TR. Simulation of CT reconstruction artifacts associated with multiple-rotation fan-beam data collection. Comput Radiol. 1986;10(1):23–36.

    Article  PubMed  CAS  Google Scholar 

  16. Schindera ST, Diedrichsen L, Muller HC, Rusch O, Marin D, Schmidt B, et al. Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology. 2011;260(2):454–62.

    Article  PubMed  Google Scholar 

  17. Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Strother CM, Kalender WA, et al. Flat detector CT in the evaluation of brain parenchyma, intracranial vasculature, and cerebral blood volume: a pilot study in patients with acute symptoms of cerebral ischemia. AJNR Am J Neuroradiol. 2010;31(8):1462–9.

    Article  PubMed  CAS  Google Scholar 

  18. Penzkofer T, Isfort P, Bruners P, Wiemann C, Kyriakou Y, Kalender WA, et al. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments. Eur Radiol. 2010;20(11):2656–62.

    Article  PubMed  Google Scholar 

  19. Struffert T, Richter G, Engelhorn T, Doelken M, Goelitz P, Kalender WA, et al. Visualisation of intracerebral haemorrhage with flat-detector CT compared to multislice CT: results in 44 cases. Eur Radiol. 2009;19(3):619–25.

    Article  PubMed  Google Scholar 

  20. Suzuki S, Yamaguchi I, Kidouchi T, Yamamoto A, Masumoto T, Ozaki Y. Evaluation of effective dose during abdominal three-dimensional imaging for three flat-panel-detector angiography systems. Cardiovasc Intervent Radiol. 2011;34(2):376–82.

    Article  PubMed  Google Scholar 

  21. Phan CM, Macklin EA, Bredella MA, Dadrich M, Flechsig P, Yoo AJ, et al. Trabecular structure analysis using C-arm CT: comparison with MDCT and flat-panel volume CT. Skeletal Radiol. 2010;40(8):1065–72.

    Article  PubMed  Google Scholar 

  22. Walsh CJ, Phan CM, Misra M, Bredella MA, Miller KK, Fazeli PK, et al. Women with anorexia nervosa: finite element and trabecular structure analysis by using flat-panel volume CT. Radiology. 2010;257(1):167–74.

    Article  PubMed  Google Scholar 

  23. Bredella MA, Misra M, Miller KK, Madisch I, Sarwar A, Cheung A, et al. Distal radius in adolescent girls with anorexia nervosa: trabecular structure analysis with high-resolution flat-panel volume CT. Radiology. 2008;249(3):938–46.

    Article  PubMed  Google Scholar 

  24. Guggenberger R, Fischer MA, Hodler J, Pfammatter T, Andreisek G. Flat-panel CT arthrography: feasibility study and comparison to multidetector CT arthrography. Invest Radiol. 2012;47(5):312–8.

    Article  PubMed  Google Scholar 

  25. Moser T, Dosch JC, Moussaoui A, Buy X, Gangi A, Dietemann JL. Multidetector CT arthrography of the wrist joint: how to do it. Radiographics. 2008;28(3):787–800. quiz 911.

    Article  PubMed  Google Scholar 

  26. Steinbach LS, Schwartz M. Elbow arthrography. Radiol Clin North Am. 1998;36(4):635–49.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull. 1968;70(4):213–20.

    Article  PubMed  CAS  Google Scholar 

  28. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  PubMed  CAS  Google Scholar 

  29. Huda W, Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT. Radiology. 2000;217(2):430–5.

    PubMed  CAS  Google Scholar 

  30. Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology. 2005;237(3):945–51.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Guggenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guggenberger, R., Morsbach, F., Alkadhi, H. et al. C-arm flat-panel CT arthrography of the wrist and elbow: first experiences in human cadavers. Skeletal Radiol 42, 419–429 (2013). https://doi.org/10.1007/s00256-012-1501-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-012-1501-7

Keywords

Navigation