Skip to main content

Advertisement

Log in

Cone-beam computed tomography arthrography: an innovative modality for the evaluation of wrist ligament and cartilage injuries

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Cone-beam computed tomography (CBCT) has become an important modality in dento-facial imaging but remains poorly used in the exploration of the musculoskeletal system. The purpose of this study was to prospectively evaluate the performance and radiation exposure of CBCT arthrography in the evaluation of ligament and cartilage injuries in cadaveric wrists, with gross pathology findings as the standard of reference.

Materials and methods

Conventional arthrography was performed under fluoroscopic guidance on 10 cadaveric wrists, followed by MDCT acquisition and CBCT acquisition. CBCT arthrography and MDCT arthrography images were independently analyzed by two musculoskeletal radiologists working independently and then in consensus. The following items were observed: scapholunate and lunotriquetral ligaments, triangular fibrocartilage complex (TFCC) (tear, integrity), and proximal carpal row cartilage (chondral tears). Wrists were dissected and served as the standard of reference for comparisons. Interobserver agreement, sensitivity, specificity, and accuracy were determined. Radiation dose (CTDI) of both modalities was recorded.

Results

CBCT arthrography provides equivalent results to MDCT arthrography in the evaluation of ligaments and cartilage with sensitivity and specificity between 82 and 100%, and interobserver agreement between 0.83 and 0.97. However, radiation dose was significantly lower (p < 0.05) for CBCT arthrography than for MDCT arthrography with a mean CTDI of 2.1 mGy (range 1.7–2.2) versus a mean of 15.1 mGy (range 14.7–16.1).

Conclusion

CBCT arthrography appears to be an innovative alternative to MDCT arthrography of the wrist as it allows an accurate and low radiation dose evaluation of ligaments and cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–c
Fig. 3a–c

Similar content being viewed by others

References

  1. Watanabe A, Souza F, Vezeridis PS, Blazar P, Yoshioka H. Ulnar-sided wrist pain. II. Clinical imaging and treatment. Skeletal Radiol. 2010;39:837–57.

    Article  PubMed  Google Scholar 

  2. Sofka CM, Potter HG. Magnetic resonance imaging of the wrist. Semin Musculoskelet Radiol. 2001;5:217–26.

    Article  PubMed  CAS  Google Scholar 

  3. Pretorius ES, Epstein RE, Dalinka MK. MR imaging of the wrist. Radiol Clin North Am. 1997;35:145–61.

    PubMed  CAS  Google Scholar 

  4. Saupe N, Pfirrmann CWA, Schmid MR, Schertler T, Manestar M, Weishaupt D. MR imaging of cartilage in cadaveric wrists: comparison between imaging at 1.5 and 3.0 T and gross pathologic inspection. Radiology. 2007;243:180–7.

    Article  PubMed  Google Scholar 

  5. Moser T, Dosch J-C, Moussaoui A, Dietemann J-L. Wrist ligament tears: evaluation of MRI and combined MDCT and MR arthrography. AJR Am J Roentgenol. 2007;188:1278–86.

    Article  PubMed  Google Scholar 

  6. Zanetti M, Saupe N, Nagy L. Role of MR imaging in chronic wrist pain. Eur Radiol. 2007;17:927–38.

    Article  PubMed  Google Scholar 

  7. Maizlin ZV, Brown JA, Clement JJ, Grebenyuk J, Fenton DM, Smith DE, et al. MR arthrography of the wrist: controversies and concepts. Hand (N Y). 2009;4:66–73.

    Article  Google Scholar 

  8. Zanetti M, Bräm J, Hodler J. Triangular fibrocartilage and intercarpal ligaments of the wrist: does MR arthrography improve standard MRI? J Magn Reson Imaging. 1997;7:590–4.

    Article  PubMed  CAS  Google Scholar 

  9. Theumann NH, Pfirrmann CWA, Chung CB, Antonio GE, Trudell DJ, Resnick D. Ligamentous and tendinous anatomy of the intermetacarpal and common carpometacarpal joints: evaluation with MR imaging and MR arthrography. J Comput Assist Tomogr. 2002;26:145–52.

    Article  PubMed  Google Scholar 

  10. Schmid MR, Schertler T, Pfirrmann CW, Saupe N, Manestar M, Wildermuth S, et al. Interosseous ligament tears of the wrist: comparison of multi-detector row CT arthrography and MR imaging. Radiology. 2005;237:1008–13.

    Article  PubMed  Google Scholar 

  11. Quinn SF, Belsole RS, Greene TL, Rayhack JM. Work in progress: postarthrography computed tomography of the wrist: evaluation of the triangular fibrocartilage complex. Skeletal Radiol. 1989;17:565–9.

    Article  PubMed  CAS  Google Scholar 

  12. Brix G, Nagel HD, Stamm G, Veit R, Lechel U, Griebel J, et al. Radiation exposure in multi-slice versus single-slice spiral CT: results of a nationwide survey. Eur Radiol. 2003;13:1979–91.

    Article  PubMed  CAS  Google Scholar 

  13. Roth JS. CBCT technology: endodontics and beyond, part 2. Dent Today. 2011;30(78):80–3.

    Google Scholar 

  14. Fahrig R, Dixon R, Payne T, Morin RL, Ganguly A, Strobel N. Dose and image quality for a cone-beam C-arm CT system. Med Phys. 2006;33:4541–50.

    Article  PubMed  Google Scholar 

  15. De Cock J, Mermuys K, Goubau J, Van Petegem S, Houthoofd B, Casselman JW. Cone-beam computed tomography: a new low dose, high resolution imaging technique of the wrist, presentation of three cases with technique. Skeletal Radiol. 2011;Epub May 21

  16. Lofthag-Hansen S, Gröndahl K, Ekestubbe A. Cone-beam CT for preoperative implant planning in the posterior mandible: visibility of anatomic landmarks. Clin Implant Dent Relat Res. 2009;11:246–55.

    Article  PubMed  Google Scholar 

  17. Saupe N. 3-Tesla high-resolution MR imaging of the wrist. Semin Musculoskelet Radiol. 2009;13:29–38.

    Article  PubMed  Google Scholar 

  18. van Dijke CF, Wiarda BM. High resolution wrist MR arthrography at 1.5 T. JBR-BTR. 2009;92:53–9.

    PubMed  Google Scholar 

  19. Moser T, Khoury V, Harris PG, Bureau NJ, Cardinal E, Dosch J-C. MDCT arthrography or MR arthrography for imaging the wrist joint? Semin Musculoskelet Radiol. 2009;13:39–54.

    Article  PubMed  Google Scholar 

  20. Alam F, Schweitzer ME, Li XX, Malat J, Hussain SM. Frequency and spectrum of abnormalities in the bone marrow of the wrist: MR imaging findings. Skeletal Radiol. 1999;28:312–7.

    Article  PubMed  CAS  Google Scholar 

  21. Saupe N, Prüssmann KP, Luechinger R, Bösiger P, Marincek B, Weishaupt D. MR imaging of the wrist: comparison between 1.5- and 3-T MR imaging–preliminary experience. Radiology. 2005;234:256–64.

    Article  PubMed  Google Scholar 

  22. Haims AH, Moore AE, Schweitzer ME, Morrison WB, Deely D, Culp RW, et al. MRI in the diagnosis of cartilage injury in the wrist. AJR Am J Roentgenol. 2004;182:1267–70.

    PubMed  Google Scholar 

  23. Yoshioka H, Ueno T, Tanaka T, Shindo M, Itai Y. High-resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil. Skeletal Radiol. 2003;32:575–81.

    Article  PubMed  Google Scholar 

  24. Oneson SR, Timins ME, Scales LM, Erickson SJ, Chamoy L. MR imaging diagnosis of triangular fibrocartilage pathology with arthroscopic correlation. AJR Am J Roentgenol. 1997;168:1513–8.

    PubMed  CAS  Google Scholar 

  25. Schmitt R, Christopoulos G, Meier R, Coblenz G, Fröhner S, Lanz U, et al. Direct MR arthrography of the wrist in comparison with arthroscopy: a prospective study on 125 patients. Rofo. 2003;175:911–9.

    Article  PubMed  CAS  Google Scholar 

  26. Beaulieu CF, Ladd AL. MR arthrography of the wrist: scanning-room injection of the radiocarpal joint based on clinical landmarks. AJR Am J Roentgenol. 1998;170:606–8.

    PubMed  CAS  Google Scholar 

  27. Hodler J. Technical errors in MR arthrography. Skeletal Radiol. 2008;37:9–18.

    Article  PubMed  Google Scholar 

  28. Buckwalter KA. CT arthrography. Clin Sports Med. 2006;25:899–915.

    Article  PubMed  Google Scholar 

  29. Theumann N, Favarger N, Schnyder P, Meuli R. Wrist ligament injuries: value of post-arthrography computed tomography. Skeletal Radiol. 2001;30:88–93.

    Article  PubMed  CAS  Google Scholar 

  30. Hein I, Taguchi K, Silver MD, Kazama M, Mori I. Feldkamp-based cone-beam reconstruction for gantry-tilted helical multislice CT. Med Phys. 2003;30:3233–42.

    Article  PubMed  Google Scholar 

  31. Ishikura R, Ando K, Nagami Y, Yamamoto S, Miura K, Pande AR, et al. Evaluation of vascular supply with cone-beam computed tomography during intraarterial chemotherapy for a skull base tumor. Radiat Med. 2006;24:384–7.

    Article  PubMed  Google Scholar 

  32. Hirota S, Nakao N, Yamamoto S, Kobayashi K, Maeda H, Ishikura R, et al. Cone-beam CT with flat-panel-detector digital angiography system: early experience in abdominal interventional procedures. Cardiovasc Intervent Radiol. 2006;29:1034–8.

    Article  PubMed  Google Scholar 

  33. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8:1558–64.

    Article  PubMed  CAS  Google Scholar 

  34. Quereshy FA, Barnum G, Demko C, Horan M, Palomo JM, Baur DA, et al. Use of cone beam computed tomography to volumetrically assess alveolar cleft defects—preliminary results. J Oral Maxillofac Surg. 2011;Epub May 18

  35. Lofthag-Hansen S, Thilander-Klang A, Ekestubbe A, Helmrot E, Gröndahl K. Calculating effective dose on a cone beam computed tomography device: 3D Accuitomo and 3D Accuitomo FPD. Dentomaxillofac Radiol. 2008;37:72–9.

    Article  PubMed  CAS  Google Scholar 

  36. Daly MJ, Siewerdsen JH, Moseley DJ, Jaffray DA, Irish JC. Intraoperative cone-beam CT for guidance of head and neck surgery: assessment of dose and image quality using a C-arm prototype. Med Phys. 2006;33:3767–80.

    Article  PubMed  CAS  Google Scholar 

  37. Kim S, Song H, Samei E, Yin F-F, Yoshizumi TT. Computed tomography dose index and dose length product for cone-beam CT: Monte Carlo simulations. J Appl Clin Med Phys. 2011;12:3384–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bierry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramdhian-Wihlm, R., Le Minor, JM., Schmittbuhl, M. et al. Cone-beam computed tomography arthrography: an innovative modality for the evaluation of wrist ligament and cartilage injuries. Skeletal Radiol 41, 963–969 (2012). https://doi.org/10.1007/s00256-011-1305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-011-1305-1

Keywords

Navigation