Skip to main content
Log in

Creation of Rhizopus oryzae lipase having a unique oxyanion hole by combinatorial mutagenesis in the lid domain

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Combinatorial libraries of the lid domain of Rhizopus oryzae lipase (ROL; Phe88Xaa, Ala91Xaa, Ile92Xaa) were displayed on the yeast cell surface using yeast cell-surface engineering. Among the 40,000 transformants in which ROL mutants were displayed on the yeast cell surface, ten clones showed clear halos on soybean oil-containing plates. Among these, some clones exhibited high activities toward fatty acid esters of fluorescein and contained non-polar amino acid residues in the mutated positions. Computer modeling of the mutants revealed that hydrophobic interactions between the substrates and amino acid residues in the open form of the lid might be critical for ROL activity. Based on these results, Thr93 and Asp94 were further combinatorially mutated. Among 6,000 transformants, the Thr93Thr, Asp94Ser and Thr93Ser, Asp94Ser transformants exhibited a significant shift in substrate specificity toward a short-chain substrate. Computer modeling of these mutants suggested that a unique oxyanion hole, which is composed of Thr85 Oγ and Ser94 Oγ, was formed and thus the substrate specificity was changed. Therefore, coupling combinatorial mutagenesis with the cell surface display of ROL could lead to the production of a unique ROL mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beer HD, Wohlfahrt G, Mccarthy JE, Schomburg D, Schmid, RD (1996) Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants. Protein Eng 9:507–517

    Article  CAS  Google Scholar 

  • Beer HD, McCarthy JEG, Bornscheuer UT, Schmid RD (1998) Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae. Biochim Biophys Acta 1399:173–180

    Article  CAS  Google Scholar 

  • Benhar I (2001) Biotechnological applications of phage and cell display. Biotechnol Adv 19:1–33

    Article  CAS  Google Scholar 

  • Berg OG, Cajal Y, Butterfoss GL, Grey RL, Alsina MA, Yu BZ, Jain MK (1998) Interfacial activation of triglyceride lipase from Thermomyces (Humicola) lanuginosa: kinetic parameters and a basis for control of the lid. Biochemistry 37:6615–6627

    Article  CAS  Google Scholar 

  • Brocca S, Secundo F, Ossola M, Alberghina L, Carrea G, Lotti M (2003) Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Sci 12:2312–2319

    Article  CAS  Google Scholar 

  • Cajal Y, Svendsen A, Girona V, Patkar SA, Alsina MA (2000) Interfacial control of lid opening in Thermomyces lanuginosa lipase. Biochemistry 39:413–423

    Article  CAS  Google Scholar 

  • Carlos JL, Klenotic PA, Paetzel M, Strynadka NCJ, Dalbey RE (2000) Mutational evidence of transition state stabilization by serine 88 in Escherichia coli type I signal peptidase. Biochemistry 39:7276–7283

    Article  CAS  Google Scholar 

  • Cygler M, Schrag JD (1997) Lipases and alpha/beta hydrolase fold. Methods Enzymol 284:3–28

    Article  CAS  Google Scholar 

  • Derewenda S, Brzozowski AM, Lawson DM, Derewenda ZM (1992) Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry 31:1532–1541

    Article  CAS  Google Scholar 

  • Fischer M, Pleiss J (2003) The lipase engineering database: a navigation and analysis tool for protein families. Nucleic Acids Res 31:319–321

    Article  CAS  Google Scholar 

  • Herrgard S, Gibas CJ, Subramaniam S (2000) Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family. Biochemistry 39:2921–2930

    Article  CAS  Google Scholar 

  • Kohno M, Funatsu J, Mikami B, Kugiyama W, Matsuo T, Morita Y (1996) The crystal structure of lipase II from Rhizopus niveus at 2.2 A resolution. J Biochem 120:505–510

    Article  CAS  Google Scholar 

  • Kramer DN, Guilbault GG (1963) A substrate for the fluorometric determination of lipase activity. Anal Chem 35:4–5

    Article  Google Scholar 

  • Murai T, Ueda M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Kawaguchi T, Arai M, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Microbiol Biotechnol 64:4857–4861

    Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning, 3rd Edn. Cold Harbor Laboratory, Cold Harbor, N.Y.

  • Secundo F, Carrea G, Tarabiono C, Brocca S, Lotti M (2004) Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents. Biotechnol Bioeng 86:236–240

    Article  CAS  Google Scholar 

  • Shibamoto H, Matsumoto T, Fukuda H, Kondo A (2004) Molecular engineering of Rhizopus oryzae lipase using a combinatorial protein library constructed on the yeast cell surface. J Mol Catal B Enzym 28:235–239

    Article  CAS  Google Scholar 

  • Shiraga S, Ueda M, Takahashi S, Tanaka A (2002) Construction of the combinatorial library of Rhizopus oryzae lipase mutated in the lid domain by displaying on years cell surface. J Mol Catal B Enzym 17:167–173

    Article  CAS  Google Scholar 

  • Shiraga S, Kawakami M, Ueda M (2004) Construction of combinatorial library of starch-binding domain of Rhizopus oryzae glucoamylase and screening of clones with enhanced activity by yeast display method. J Mol Catal B Enzym 28:229–234

    Article  CAS  Google Scholar 

  • Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543:223–238

    Article  CAS  Google Scholar 

  • Tajima M, Nogi Y, Fukasawa T (1985) Transcriptional regulation of yeast genes for galactose metabolism. Yeast 1:67–77

    Article  CAS  Google Scholar 

  • Takahashi S, Ueda M, Atomi H, Beer HD, Bornscheuer UT, Schmid RD, Tanaka A (1998) Extracelluar production of active Rhizopus oryzae lipase by Saccharomyces cerevisiae. J Ferment Bioeng 86:164

    Article  CAS  Google Scholar 

  • Ueda M, Takahashi S, Washida M, Shiraga S, Tanaka A (2002) Expression of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae. J Mol Catal B Enzym 17:113–124

    Article  CAS  Google Scholar 

  • Washida M, Takahashi S, Ueda M, Tanaka A (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl Microbiol Biotechnol 56:681–686

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiraga, S., Ishiguro, M., Fukami, H. et al. Creation of Rhizopus oryzae lipase having a unique oxyanion hole by combinatorial mutagenesis in the lid domain. Appl Microbiol Biotechnol 68, 779–785 (2005). https://doi.org/10.1007/s00253-005-1935-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-1935-0

Keywords

Navigation