Skip to main content

Advertisement

Log in

Receptor imaging of pediatric tumors: clinical practice and new developments

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Pediatric cancers often have specific molecular fingerprints making them primary candidates for the development of targeted imaging techniques. Tumor-targeted tracers have the potential to substantially advance the sensitivity and specificity of imaging techniques by improving tumor detection and characterization. This article reviews various approaches to target tumors via specific tumor antigens, tumor cell surface receptors and specific surface receptors of the endothelial cells of the tumor vessels. These new applied molecular imaging techniques are expected to improve our knowledge of the biology of pediatric cancers and, ultimately, to help in the development of tailored diagnoses and therapies, which may ultimately lead to better individual long-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Slack A, Chen Z, Tonelli R et al (2005) The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc Natl Acad Sci USA 102:731–736

    Article  PubMed  CAS  Google Scholar 

  2. Zagozdzon R, Fu Y, Avraham H (2008) Csk homologous kinase inhibits CSCL12-CSCR4 signaling in neuroblastoma. Int J Oncol 32:619–623

    PubMed  CAS  Google Scholar 

  3. de Nigris F, Botti C, de Chiara A et al (2006) Expression of transcription factor Yin Yang 1 in human osteosarcomas. Eur J Cancer 42:2420–2424

    Article  PubMed  Google Scholar 

  4. Cherry SR, Sorenson JA, Phelps ME (2003) Physics in nuclear medicine, 3rd edn. Elsevier, Philadelphia

    Google Scholar 

  5. Hasegawa BH, Gingold EL, Reilly SM et al (1990) Description of a simultaneous emission-transmission CT system. Proc Soc Photo Opt Instrum Eng 1231:50–60

    Google Scholar 

  6. Filippi L, Santoni R, Manni C et al (2005) Imaging primary brain tumors by single-photon emission computerized tomography (SPECT) with technetium-99m sestamibi (MIBI) and tetrofosmin. Curr Med Im Rev 1:61–66

    Article  CAS  Google Scholar 

  7. Kanishi D (1993) Tc-99m accumulation mechanisms in bone. Oral Surg Oral Med Oral Pathol 75:239–246

    Article  PubMed  CAS  Google Scholar 

  8. Grant FD, Fahey FH, Packard AB et al (2008) Skeletal PET with F-18 fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78

    Article  PubMed  Google Scholar 

  9. Hoh CK, Hawkins RA, Dahlbom M et al (1993) Whole body skeletal imaging with F-18 fluoride ion and PET. J Comput Assist Tomogr 17:34–41

    Article  PubMed  CAS  Google Scholar 

  10. Matthay KK, Yanik G, Messina J et al (2007) Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol 25:1054–1060

    Article  PubMed  CAS  Google Scholar 

  11. Slooter GD (2001) Somatostatin receptor imaging, therapy and new strategies in patient with neuroendocrine tumors. Br J Surg 88:31–40

    Article  PubMed  CAS  Google Scholar 

  12. Kewkkeboom DJ, Reubi JC, Krenning EP (2004) Peptide receptor scintigraphy in oncology. In: Ell PJ, Gambhir SS (eds) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, New York, pp 97–106

    Google Scholar 

  13. Immunomedics (1999) CEA-Scan (Arcitumomab) for the preparation of Tc-99m Arcitumomab. Package insert. Immunomedics, Morris Plains, NJ, pp 1–15

  14. Wahl RL, Philpott G, Parker CW (1983) Monoclonal antibody radioimmunodetection of human-derived colon cancer. Invest Radiol 18:58–62

    Article  PubMed  CAS  Google Scholar 

  15. Feneley MR, Jan H, Granowska M et al (2000) Imaging with prostate-specific membrane antigen (PSMA) in prostate cancer. Prostate Cancer Prostatic Dis 3:47–52

    Article  PubMed  Google Scholar 

  16. Kowalsky RJ, Falen SW (2004) Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. American Pharmacists Association, Washington DC, pp 733–752

    Google Scholar 

  17. Forera A, Weiden PL, Vose JM et al (2004) Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood 104:227–236

    Article  Google Scholar 

  18. Sharkey RM, Karacay H, Vallabhajosula S et al (2008) Metastatic human colonic carcinoma: molecular imaging with pretargeted SPECT and PET in a mouse model. Radiology 246:497–507

    Article  PubMed  Google Scholar 

  19. Alavi A, Kung JW, Zhuang H (2004) Implications of PET based molecular imaging on the current and future practice of medicine. Semin Nucl Med 34:56–69

    Article  PubMed  Google Scholar 

  20. Voss SD, Smith SV, DiBartolo N et al (2007) Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci USA 104:17489–17493

    Article  PubMed  CAS  Google Scholar 

  21. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    Article  PubMed  CAS  Google Scholar 

  22. Werner EJ, Avedano S, Botta M et al (2007) Highly soluble tris-hydroxypyridonate Gd(III) complexes with increased hydration number, fast water exchange, slow electronic relaxation, and high relaxivity. J Am Chem Soc 129:1870–1871

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi H, Brechbiel MW (2003) Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol Imaging 2:1–10

    Article  PubMed  CAS  Google Scholar 

  24. Caravan P, Cloutier NJ, Greenfield MT et al (2002) The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 124:3152–3162

    Article  PubMed  CAS  Google Scholar 

  25. Li C, Winnard PT Jr, Takagi T et al (2006) Multimodal image-guided enzyme/prodrug cancer therapy. J Am Chem Soc 128:15072–15073

    Article  PubMed  CAS  Google Scholar 

  26. Geninatti Crich S, Bussolati B, Tei L et al (2006) Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res 66:9196–9201

    Article  PubMed  CAS  Google Scholar 

  27. Shapiro EM, Skrtic S, Sharer K et al (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101:10901–10906

    Article  PubMed  CAS  Google Scholar 

  28. Nakahara T, Norberg SM, Shalinsky DR et al (2006) Effect of inhibition of vascular endothelial growth factor signaling on distribution of extravasated antibodies in tumors. Cancer Res 66:1434–1445

    Article  PubMed  CAS  Google Scholar 

  29. Folkman J (1998) Antiangiogenic gene therapy. Proc Natl Acad Sci USA 95:9064–9066

    Article  PubMed  CAS  Google Scholar 

  30. Sipkins DA, Cheresh DA, Kazemi MR et al (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  PubMed  CAS  Google Scholar 

  31. Winter PM, Caruthers SD, Kassner A et al (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63:5838–5843

    PubMed  CAS  Google Scholar 

  32. Artemov D, Mori N, Ravi R et al (2003) Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 63:2723–2727

    PubMed  CAS  Google Scholar 

  33. Dafni H, Israely T, Bhujwalla ZM et al (2002) Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res 62:6731–6739

    PubMed  CAS  Google Scholar 

  34. Wiener EC, Konda S, Shadron A et al (1997) Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest Radiol 32:748–754

    Article  PubMed  CAS  Google Scholar 

  35. Konda SD, Aref M, Wang S et al (2001) Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. MAGMA 12:104–113

    Article  PubMed  CAS  Google Scholar 

  36. Corot C, Robert P, Lancelot E et al (2005) Tumor imaging using a high relaxivity gadolinium chelate targeted to the folate receptor. In: Proceedings of the 13th Scientific Meeting of the International Society of Magnetic Resonance in Medicine, Miami, Florida, p 260

  37. Saborowski O, Simon G, Raatschen H et al (2007) MR imaging of arthritis with the new, folate-receptor targeted contrast agent P866. Contrast Media Mol Imaging 2:72–81

    Article  PubMed  CAS  Google Scholar 

  38. Vakkila J, Jaffe R, Michelow M et al (2006) Pediatric cancers are infiltrated predominantly by macrophages and contain a paucity of dendritic cells: a major nosologic difference with adult tumors. Clin Cancer Res 12:2049–2054

    Article  PubMed  CAS  Google Scholar 

  39. Luciani A, Olivier JC, Clement O et al (2004) Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes. Radiology 231:135–142

    Article  PubMed  Google Scholar 

  40. Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355

    Article  PubMed  CAS  Google Scholar 

  41. Zhao M, Beauregard DA, Loizou L et al (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241–1244

    Article  PubMed  CAS  Google Scholar 

  42. Weissleder R, Lee AS, Fischman AJ et al (1991) Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. Radiology 181:245–249

    PubMed  CAS  Google Scholar 

  43. Gurney J, Smith M, Bunin G (1999) CNS and miscellaneous intracranial and intraspinal neoplasms. In: Ries L, Smith M, Gurney J et al (eds) Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. Publication no. 99-4649. National Cancer Institute, SEER Program, NIH, Bethesda, MD

  44. Slater O, Shipley J (2007) Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 60:1187–1194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant P50 CA103175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike E. Daldrup-Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daldrup-Link, H.E., Hawkins, R.A., Meier, R. et al. Receptor imaging of pediatric tumors: clinical practice and new developments. Pediatr Radiol 38, 1154–1161 (2008). https://doi.org/10.1007/s00247-008-0878-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-008-0878-x

Keywords

Navigation