Skip to main content
Log in

A fully nonlinear flow for two-convex hypersurfaces in Riemannian manifolds

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We consider a one-parameter family of closed, embedded hypersurfaces moving with normal velocity \(G_\kappa = \big ( \sum _{i < j} \frac{1}{\lambda _i+\lambda _j-2\kappa } \big )^{-1}\), where \(\lambda _1 \le \cdots \le \lambda _n\) denote the curvature eigenvalues and \(\kappa \) is a nonnegative constant. This defines a fully nonlinear parabolic equation, provided that \(\lambda _1+\lambda _2>2\kappa \). In contrast to mean curvature flow, this flow preserves the condition \(\lambda _1+\lambda _2>2\kappa \) in a general ambient manifold. Our main goal in this paper is to extend the surgery algorithm of Huisken–Sinestrari to this fully nonlinear flow. This is the first construction of this kind for a fully nonlinear flow. As a corollary, we show that a compact Riemannian manifold satisfying \(\overline{R}_{1313}+\overline{R}_{2323} \ge -2\kappa ^2\) with non-empty boundary satisfying \(\lambda _1+\lambda _2 > 2\kappa \) is diffeomorphic to a 1-handlebody. The main technical advance is the pointwise curvature derivative estimate. The proof of this estimate requires a new argument, as the existing techniques for mean curvature flow due to Huisken–Sinestrari, Haslhofer–Kleiner, and Brian White cannot be generalized to the fully nonlinear setting. To establish this estimate, we employ an induction-on-scales argument; this relies on a combination of several ingredients, including the almost convexity estimate, the inscribed radius estimate, as well as a regularity result for radial graphs. We expect that this technique will be useful in other situations as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, B.: Contraction of convex hypersurfaces in Riemannian spaces. J. Differ. Geom. 39, 407–431 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrews, B.: Non-collapsing in mean-convex mean curvature flow. Geom. Topol. 16, 1413–1418 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andrews, B., Langford, M., McCoy, J.: Non-collapsing in fully non-linear curvature flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 23–32 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andrews, B., Langford, M., McCoy, J.: Convexity estimates for hypersurfaces moving by convex curvature functions. Anal. PDE 7, 407–433 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ball, J.M.: Differentiability properties of symmetric and isotropic functions. Duke Math. J. 51, 699–728 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brendle, S.: Embedded minimal tori in \(S^3\) and the Lawson conjecture. Acta Math. 211, 177–190 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brendle, S.: Two-point functions and their applications in geometry. Bull. Am. Math. Soc. 51, 581–596 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brendle, S.: A sharp bound for the inscribed radius under mean curvature flow. Invent. Math. 202, 217–237 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brendle, S.: An inscribed radius estimate for mean curvature flow in Riemannian manifolds. Ann. Scuola Norm. Sup. Pisa 16, 1447–1472 (2016)

    MATH  MathSciNet  Google Scholar 

  10. Brendle, S., Huisken, G.: Mean curvature flow with surgery of mean convex surfaces in \({{\mathbb{R}}}^3\). Invent. Math. 203, 615–654 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brendle, S., Huisken, G.: Mean curvature flow with surgery of mean convex surfaces in three-manifolds. J. Eur. Math. Soc. (to appear)

  12. Brendle, S., Hung, P.K.: A sharp inscribed radius estimate for fully nonlinear flows. Am. J. Math. (to appear)

  13. Caffarelli, L.A.: Interior a-priori estimates for solutions of fully nonlinear equations. Ann. Math. 130, 189–213 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 130, 453–471 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ecker, K., Huisken, G.: Interior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105, 547–569 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35, 333–363 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32, 299–314 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grayson, M.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hamilton, R.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24, 153–179 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hamilton, R.: Isoperimetric estimates for the curve shrinking flow in the plane. In: Modern Methods in Complex Analysis (Princeton 1992), pp. 201–222, Ann. of Math. Stud., vol. 137. Princeton University Press, Princeton (1995)

  21. Hamilton, R.: The Formation of Singularities in the Ricci Flow, Surveys in Differential Geometry, vol. II. International Press, Somerville (1995)

    Google Scholar 

  22. Hamilton, R.: Four-manifolds with positive isotropic curvature. Commun. Anal. Geom. 5, 1–92 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Haslhofer, R., Kleiner, B.: Mean curvature flow of mean convex hypersurfaces. Commun. Pure Appl. Math. 70, 511–546 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  24. Haslhofer, R., Kleiner, B.: Mean curvature flow with surgery. Duke Math. J. 166, 1591–1626 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  25. Huisken, G.: A distance comparison principle for evolving curves. Asian J. Math. 2, 127–133 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Huisken, G., Sinestrari, C.: Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math. 183, 45–70 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Huisken, G., Sinestrari, C.: Mean curvature flow with surgeries of two-convex hypersurfaces. Invent. Math. 175, 137–221 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Krylov, N.V: Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR Ser. Mat. 46, 487–523, 670 (1982)

  29. Krylov, N.V: Nonlinear elliptic and parabolic equations of the second order. Translated from the Russian by P.L. Buzytsky, Mathematics and Its Applications (Soviet Series), vol. 7, Reidel, Dordrecht (1987)

  30. Krylov, N.V., Safonov, M.V.: A property of the solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44, 161–175, 239 (1980)

  31. Michael, J.H., Simon, L.M.: Sobolev and mean value inequalities on generalized submanifolds of \({{\mathbb{R}}}^n\). Commun. Pure Appl. Math. 26, 316–379 (1973)

    Article  MathSciNet  Google Scholar 

  32. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159

  33. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math/0303109

  34. Perelman, G.: Finite extinction time for solutions to the Ricci flow on certain three-manifolds. arXiv:math/0307245

  35. Sha, J.P.: \(p\)-convex Riemannian manifolds. Invent. Math. 83, 437–447 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sheng, W., Wang, X.J.: Singularity profile in the mean curvature flow. Methods Appl. Anal. 16, 139–155 (2009)

    MATH  MathSciNet  Google Scholar 

  37. Tso, K.: Deforming a hypersurface by its Gauss-Kronecker curvature. Commun. Pure Appl. Math. 38, 867–882 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  38. Urbas, J.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205, 355–372 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  39. White, B.: The size of the singular set in mean curvature flow of mean convex sets. J. Am. Math. Soc. 13, 665–695 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. White, B.: The nature of singularities in mean curvature flow of mean convex sets. J. Am. Math. Soc. 16, 123–138 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Connor Mooney and Xu-Jia Wang for discussions. We are very grateful to Richard Hamilton for discussions on the non-conic estimate for the Ricci flow. The first author is grateful to Columbia University, the Fields Institute, Toronto, and Tübingen University, where parts of this work were carried out. This project was supported by the National Science Foundation under Grants DMS-1201924 and DMS-1505724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Brendle.

Appendix: Review of Krylov–Safonov estimates

Appendix: Review of Krylov–Safonov estimates

For the convenience of the reader, we collect some well-known regularity results for parabolic equations. The first one is the crucial Hölder estimate of Krylov and Safonov [30] (see also [29], Theorem 7 on pp. 137–138):

Theorem A.1

(N.V. Krylov, M.V. Safonov) Let \(v: B_1(0) \times [0,1] \rightarrow {\mathbb {R}}\) be a solution of the parabolic equation \(\frac{\partial }{\partial t} v = \sum _{i,j} a_{ij} \, D_i D_j v + \sum _i b_i \, D_i v + f\). We assume that the coefficients satisfy \(\frac{1}{K} \, \delta _{ij} \le a_{ij} \le K \, \delta _{ij}\) and \(|b_i| \le K\). Then

$$\begin{aligned}{}[v]_{C^{\gamma ;\frac{\gamma }{2}}(B_{\frac{1}{2}}(0) \times [\frac{1}{2},1])}\le & {} C \, \left( \sup _{B_1(0) \times [0,1])} v - \inf _{B_1(0) \times [0,1]} v \right) \\&\quad + C \, \Vert f\Vert _{C^0(B_1(0) \times [0,1])}, \end{aligned}$$

where \(\gamma >0\) and \(C>0\) depend only on K.

Corollary A.2

(N.V. Krylov, M.V. Safonov) Let \(0 < \tau \le \frac{1}{4}\), and let \(v: B_1(0) \times [0,\tau ] \rightarrow {\mathbb {R}}\) be a solution of the parabolic equation \(\frac{\partial }{\partial t} v = \sum _{i,j} a_{ij} \, D_i D_j v + \sum _i b_i \, D_i v + f\). We assume that the coefficients satisfy \(\frac{1}{K} \, \delta _{ij} \le a_{ij} \le K \, \delta _{ij}\) and \(|b_i| \le K\). Finally, we assume that \(\Vert v\Vert _{C^0(B_1(0) \times [0,\tau ])} + \Vert v(\cdot ,0)\Vert _{C^2(B_1(0))} + \Vert f\Vert _{C^0(B_1(0) \times [0,\tau ])} \le L\). Then

$$\begin{aligned}{}[v]_{C^{\gamma ;\frac{\gamma }{2}}(B_{\frac{1}{2}}(0) \times [0,\tau ])} \le C. \end{aligned}$$

Here, \(\gamma >0\) depends only on K, and C depends only on K and L. In particular, \(\gamma \) and C are independent of \(\tau \).

Proof

We sketch the argument for the convenience of the reader. Using a straightforward barrier argument, we can show that

$$\begin{aligned} \sup _{B_r(x) \times [0,\min \{r^2,\tau \}]} v \le v(x,0)+Cr \end{aligned}$$

and

$$\begin{aligned} \inf _{B_r(x) \times [0,\min \{r^2,\tau \}]} v \ge v(x,0)-Cr \end{aligned}$$

for \(x \in B_{\frac{1}{2}}(0)\) and \(0 < r \le \frac{1}{2}\). This gives

$$\begin{aligned} \sup _{B_r(x) \times [0,\min \{r^2,\tau \}]} v - \inf _{B_r(x) \times [0,\min \{r^2,\tau \}]} v \le Cr \end{aligned}$$
(6)

for \(x \in B_{\frac{1}{2}}(0)\) and \(0 < r \le \frac{1}{2}\). Using Theorem A.1 together with (6), we obtain

$$\begin{aligned}{}[v]_{C^{\gamma ;\frac{\gamma }{2}}(B_{\frac{r}{2}}(x) \times [\frac{r^2}{2},r^2])} \le C \, r^{1-\gamma } \end{aligned}$$
(7)

for \(x \in B_{\frac{1}{2}}(0)\) and \(0 < r \le \tau ^{\frac{1}{2}}\). We now consider two points (xt) and \((\tilde{x},\tilde{t})\) in spacetime such that \(t \ge \tilde{t} \ge 0\). If \(2 \, |x-\tilde{x}| + 2 \, (t-\tilde{t})^{\frac{1}{2}} < t^{\frac{1}{2}}\), then (7) gives

$$\begin{aligned} |v(x,t) - v(\tilde{x},\tilde{t})| \le C \, (|x-\tilde{x}| + (t-\tilde{t})^{\frac{1}{2}})^\gamma . \end{aligned}$$

On the other hand, if \(2 \, |x-\tilde{x}| + 2 \, (t-\tilde{t})^{\frac{1}{2}} \ge t^{\frac{1}{2}}\), then (6) implies

$$\begin{aligned} |v(x,t) - v(\tilde{x},\tilde{t})| \le C \, (|x-\tilde{x}| + t^{\frac{1}{2}}) \le C \, (3 \, |x-\tilde{x}| + 2 \, (t-\tilde{t})^{\frac{1}{2}}). \end{aligned}$$

Putting these facts together, the assertion follows.

Combining the Krylov–Safonov estimate with the deep work of Evans [16], Krylov [28], and Caffarelli [13] on fully nonlinear elliptic equations gives:

Theorem A.3

Let \(u: B_1(0) \times [0,1] \rightarrow {\mathbb {R}}\) be a solution of a fully nonlinear parabolic equation

$$\begin{aligned} \frac{\partial }{\partial t} u = \Phi (D^2 u,Du,u,x), \end{aligned}$$

where \(\Phi \) depends smoothly on all its arguments. We assume that u is bounded in \(C^{2;1}(B_1(0) \times [0,1])\). Moreover, we assume that the equation is uniformly parabolic, and \(\Phi \) is concave in the first argument. Then u is uniformly bounded in \(C^{2,\gamma ;1,\frac{\gamma }{2}}(B_{\frac{1}{4}}(0) \times [\frac{1}{2},1])\) for some uniform constant \(\gamma >0\).

Proof

Consider the function \(v = \frac{\partial }{\partial t} u\). The function v satisfies a uniformly parabolic equation. Moreover, v is bounded in \(C^0(B_1(0) \times [0,1])\), so the Krylov–Safonov estimate implies that v is bounded in \(C^{\gamma ;\frac{\gamma }{2}}(B_{\frac{1}{2}}(0) \times [\frac{1}{2},1])\). Using Theorem 3 in [13], it follows that \(\sup _{t \in [\frac{1}{2},1]} \Vert u(t)\Vert _{C^{2,\gamma }(B_{\frac{1}{4}}(0))}\) is bounded from above. In other words, \(D^2 u\) is uniformly Hölder continuous in space. Finally,

$$\begin{aligned}&\Vert D^2 u(t)-D^2 u(t')\Vert _{C^0(B_{\frac{1}{4}}(0))} \le C \, \Vert D^2 u(t)\\&\quad -D^2 u(t')\Vert _{C^\gamma (B_{\frac{1}{4}}(0))}^{\frac{2}{2+\gamma }} \, \Vert u(t)-u(t')\Vert _{C^0(B_{\frac{1}{4}}(0))}^{\frac{\gamma }{2+\gamma }} \le C \, |t-t'|^{\frac{\gamma }{2+\gamma }} \end{aligned}$$

for \(t,t' \in [\frac{1}{2},1]\). This shows that \(D^2 u\) is uniformly Hölder continuous in time.

Corollary A.4

Let \(0 < \tau \le \frac{1}{4}\), and let \(u: B_1(0) \times [0,\tau ] \rightarrow {\mathbb {R}}\) be a solution of a fully nonlinear parabolic equation

$$\begin{aligned} \frac{\partial }{\partial t} u = \Phi (D^2 u,Du,u,x), \end{aligned}$$

where \(\Phi \) depends smoothly on all its arguments. We assume that u is bounded in \(C^{2;1}(B_1(0) \times [0,\tau ])\), and that the initial function \(u(\cdot ,0)\) is bounded in \(C^4(B_1(0))\). Moreover, we assume that the equation is uniformly parabolic, and \(\Phi \) is concave in the first argument. Then u is uniformly bounded in \(C^{2,\gamma ;1,\frac{\gamma }{2}}(B_{\frac{1}{4}}(0) \times [0,1])\) for some uniform constant \(\gamma >0\).

Proof

We again consider the function \(v = \frac{\partial }{\partial t} u\). The function v satisfies a uniformly parabolic equation. Moreover, v is bounded in \(C^0(B_1(0) \times [0,1])\) and the initial function \(v(\cdot ,0)\) is bounded in \(C^2(B_1(0))\). Consequently, v is bounded in \(C^{\gamma ;\frac{\gamma }{2}}(B_{\frac{1}{2}}(0) \times [0,1])\). As above, Theorem 3 in [13] implies that \(\sup _{t \in [0,1]} \Vert u(t)\Vert _{C^{2,\gamma }(B_{\frac{1}{4}}(0))}\) is uniformly bounded from above. In other words, \(D^2 u\) is uniformly Hölder continuous in space. As above, we have the estimate

$$\begin{aligned}&\Vert D^2 u(t)-D^2 u(t')\Vert _{C^0(B_{\frac{1}{4}}(0))} \le C \, \Vert D^2 u(t)\\&\quad -D^2 u(t')\Vert _{C^\gamma (B_{\frac{1}{4}}(0))}^{\frac{2}{2+\gamma }} \, \Vert u(t)-u(t')\Vert _{C^0(B_{\frac{1}{4}}(0))}^{\frac{\gamma }{2+\gamma }} \le C \, |t-t'|^{\frac{\gamma }{2+\gamma }} \end{aligned}$$

for \(t,t' \in [0,1]\). Hence, \(D^2 u\) is uniformly Hölder continuous in time, as claimed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brendle, S., Huisken, G. A fully nonlinear flow for two-convex hypersurfaces in Riemannian manifolds. Invent. math. 210, 559–613 (2017). https://doi.org/10.1007/s00222-017-0736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-017-0736-2

Navigation