Skip to main content
Log in

Immunochemical detection of Cry1A(b) protein in model processed foods made with transgenic maize

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Immunoassays are used to screen for the presence of genetically modified organisms in raw materials. However, processing may condition the usefulness of immunoassays to analyse genetically modified foods because it leads to protein denaturation that affects recognition by antibodies. We studied the effect of processing on the detection of Cry1A(b) protein in model foods prepared with transgenic maize using a sandwich ELISA. Nixtamalization at 100 °C for 5 min and at 85 °C for 60 min gave 40 and 70% loss of Cry1A(b) protein. In the preparation of porridge, the concentration of Cry1A(b) protein did not change until the mixture reached 75 °C, but it decreased by 90% after 3 min at that temperature. Concentration of Cry1A(b) protein decreased by 90% in tortillas griddled at 180 °C for 20 s, but no protein was detected in fried tortillas after 10 s at 190 °C. Cry1A(b) protein is rapidly denatured by heat treatment resulting in a marked decline in concentration and decreased detection in processed foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. James C (2006) ISAAA Briefs No. 36. ISAAA, Ithaca. http://www.isaaa.org/

  2. Stave JW (2002) J AOAC Int 85:780–786

    CAS  Google Scholar 

  3. Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 18 October 2003 concerning genetically modified food and feed. Off J Eur Union L 268/1, 18/10/2003 (2003)

  4. Regulation (EC) No 1830/2003 of the European Parliament and of the Council of 18 October 2003 concerning the traceability and labeling of genetically modified organisms and the traceability of food and feed products produced from GMOs. Off J Eur Union L 268/24, 18/10/2003 (2003)

  5. Stave JW (1999) Food Control 10:367–374

    Article  Google Scholar 

  6. Ahmed FE (2002) Trends Biotechnol 20:215–223

    Article  CAS  Google Scholar 

  7. Anklam E, Gadani F, Heinze P, Pijnenburg H, n Ede G (2002) Eur Food Res Technol 214:3–26

    Article  CAS  Google Scholar 

  8. Miraglia M, Berdal KG, Brera C, Corbisier P, Holst-Jensen A, Jok EJ, Marvin HJP, Schimmel H, Rentsch J, van Rie JPPF, Zagon J (2004) Food Chem Toxicol 42:1157–1180

    Article  CAS  Google Scholar 

  9. Lipp M, Brodmann P, Pietsch K, Pauwels J, Anklam E (1999) J AOAC Int 82:923–928

    CAS  Google Scholar 

  10. Walschus U, Witt S, Wittmann C (2002) Food Agric Immunol 14:231–240

    Article  CAS  Google Scholar 

  11. Roda A, Mirasoli M, Guardigli M, Michelini E, Simoni P, Magliulo M (2006) Anal Bioanal Chem 384:1269–1275

    Article  CAS  Google Scholar 

  12. Hurst CD, Knight A, Bruce IJ (1999) Mol Breed 5:579–586

    Article  CAS  Google Scholar 

  13. Díaz C, Fernández C, McDonald R, Yeung JM (2002) J AOAC Int 85:1070–1076

    Google Scholar 

  14. Terry CF, Harris N, Parkes HC (2002) J AOAC Int 85:768–774

    CAS  Google Scholar 

  15. Lipp M, Bluth A, Eyquem F, Kruse L, Schimmel H, Van den Eede G, Anklam E (2001) Eur Food Res Technol 212:497–504

    Article  CAS  Google Scholar 

  16. Greiner R, Konietzny U, Villavicencio A (2005) Food Control 16:753–759

    Article  CAS  Google Scholar 

  17. Margarit E, Reggiardo MI, Vallejos RH, Permingeat HR (2006) Food Res Int 39:250–255

    Article  CAS  Google Scholar 

  18. Hefle SL, Lambrecht DM (2004) J Food Prot 67:1933–1938

    CAS  Google Scholar 

  19. Catty D, Raykundalia C (1989) In: Catty D (ed) Antibodies: a practical approach, vol II. IRL Press, Oxford, pp 97–154

  20. Dombrink-Kurtzman MA, Dvorak TJ, Barron ME, Rooney LW (2000) J Agric Food Chem 48:5781–5786

    Article  CAS  Google Scholar 

  21. Martínez-Bustos F, Martínez-Flores HE, Sanmartín-Martínez E, Sánchez-Sinencio F, Chang YK, Barrera-Arellano D, Ríos E (2001) J Sci Food Agric 81:1455–1462

    Article  Google Scholar 

  22. Agriculture and Biotecnology Strategies (AGBIOS) (2004) GMO database. http://www.agbios.com/dbase.php. Cited 20 May 2008

  23. Bressani R, Turcios JC, Colmenares de Ruiz AS, de Palomo P (2004) J Agric Food Chem 52:1157–1162

    Article  CAS  Google Scholar 

  24. Lee JW, Kim JH, Oh SH, Byun EH, Yook HS, Kim MR, Kim KS, Byun MW (2008) Rad Phys Chem 77:352–356

    Article  CAS  Google Scholar 

  25. de Luis R, Pérez MD, Sánchez L, Lavilla M, Calvo M (2008) J Food Sci 73:447–451

    Article  Google Scholar 

  26. Perferoen M (1998) EPA (USA). http://www.epa.gov/oppbppd1/pesticides/biopesticides/pips/old/cry9c/der44258108a.htm. Cited 20 May 2008

Download references

Acknowledgments

We are very grateful to Dr. W. J. Moar for generously providing Cry1A(b) protein and to R. Nasarre for supplying grain from transgenic and non-transgenic maize. This work was supported by grants AGL2005-05494 from CICYT and PM035-2006 from the Gobierno de Aragón. Ruth de Luis and María Lavilla are recipients of Fellowships from the Gobierno de Aragón.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María D. Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Luis, R., Lavilla, M., Sánchez, L. et al. Immunochemical detection of Cry1A(b) protein in model processed foods made with transgenic maize. Eur Food Res Technol 229, 15–19 (2009). https://doi.org/10.1007/s00217-009-1021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-009-1021-4

Keywords

Navigation