Skip to main content
Log in

Effect of refrigerated storage on ascorbic acid content of orange juice treated by pulsed electric fields and thermal pasteurization

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Application of pulsed electric fields (PEF) can lead to longer shelf life of fruit juices with minimal product quality loss and good retention of fresh-like flavour. The aim of this study was to evaluate the effect of PEF and conventional pasteurization (90 °C, 20 s) on ascorbic acid content of orange juice, and to assess modifications in ascorbic acid concentration of orange juice stored in refrigeration at 2 and 10 °C for 7 weeks. The ascorbic acid degradation rate was −0.0003, −0.0006, −0.0009 and −0.0010 μs−1 for fields of 25, 30, 35 and 40 kV/cm, respectively. With selected PEF treatment (30 kV/cm and 100 μs) the shelf life based on 50% ascorbic acid losses was 277 days for the PEF-treated orange juice stored at 2 °C, while for the pasteurized juice was 90 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alwazeer D, Delbeau C, Divies C, Cachon R (2003) Int J Food Microbiol 89:21–29

    Article  CAS  Google Scholar 

  2. Aparicio P, Farré R, Frígola A (1992) An Bromatol 44:257–261

    CAS  Google Scholar 

  3. Ariahu CC, Adekunle DE, Nkpa NN (1997) J Food Proc Preserv 21:21–32

    Article  CAS  Google Scholar 

  4. Ayhan Z, Yeom HW, Zhang Q H, Min DB (2001) J Agric Food Chem 49(2):669–674

    Article  CAS  Google Scholar 

  5. Barsotti L, Cheftel JC (1999) Food Rev Int 5:181–213

    Article  Google Scholar 

  6. Bezman Y, Rouseff RL, Naim M (2001) J Agric Food Chem 49(1):5425–5432

    Article  CAS  Google Scholar 

  7. Blasco R, Esteve MJ, Frígola A, Rodrigo M (2004) Lebens Wissen Technol 37:171–175

    Article  CAS  Google Scholar 

  8. Block G, Norkus E, Hudes M, Mandel S, Helzlsouer K (2001) Am J Epidemiol 154:1113–1118

    Article  CAS  Google Scholar 

  9. Braddock RJ (1999) Handbook of citrus by-products and processing technology. Wiley, New York, pp 53–83

    Google Scholar 

  10. Bull MK, Zerdin K, Howe E, Goicoechea D, Paramanandhan P, Stockman R, Sellahewa J, Szabo EA, Johnson RL, Stewart CM (2004) Innov Food Sci Emerg Technol 5:135–149

    Article  CAS  Google Scholar 

  11. Burns J, Frase PD, Bramley PM (2003) Phytochem 62:939–947

    Article  CAS  Google Scholar 

  12. Calderón-Miranda M L, Barbosa-Cánovas GV, Swanson BG (1999) Int J Food Microbiol 51:31–39

    Article  Google Scholar 

  13. Choi MH, Kim GH, Lee HS (2002) Food Res Int 35:753–759

    Article  CAS  Google Scholar 

  14. Cortés C, Esteve MJ, Rodrigo D, Torregrosa F, Frígola A (2006) Food Chem Toxicol 44:1932–1939

    Article  CAS  Google Scholar 

  15. Cserhalmi Zs, Sass-Kiss Á, Tóth-Markus M, Lechner N (2006) Innov Food Sci Emerg Technol 7:49–54

    Article  CAS  Google Scholar 

  16. Del Caro A, Piga A, Vacca V, Agabbio M (2003) Food Chem 84:99–105

    Article  CAS  Google Scholar 

  17. Deliza R, Rosenthal A, Silva ALS (2003) Trends Food Sci Technol 14:43–49

    Article  CAS  Google Scholar 

  18. Duarte TL, Lunec J (2005) Free Radic Res 39:671–686

    Article  CAS  Google Scholar 

  19. Elez-Martínez P, Martín-Belloso O (2007) Food Chem 102:201–209

    Article  CAS  Google Scholar 

  20. Esteve MJ, Farré R, Frígola A (1995) J Agric Food Chem 43:2058–2061

    Article  CAS  Google Scholar 

  21. Esteve MJ, Farré R, Frígola A (1996) J Food Qual 19:243–249

    Article  CAS  Google Scholar 

  22. Esteve MJ, Frígola A, Martorell L, Rodrigo C (1998) J Food Prot 61:1518–1521

    CAS  Google Scholar 

  23. Esteve MJ, Frígola A, Martorell L, Rodrigo C (1999) Z Lebensm unters Forsch A—Eur Food Res Technol 208:144–147

    Article  CAS  Google Scholar 

  24. Esteve MJ, Frígola A, Rodrigo C, Rodrigo D (2005) Food Chem Toxicol 43:1413–1422

    Article  CAS  Google Scholar 

  25. Fernández-Díaz MD, Barsotti L, Dumay E, Cheftel JC (2000) J Agric Food Chem 48:2332–2339

    Article  CAS  Google Scholar 

  26. Fiore A, La Fauci L, Cervellati R, Guerra MC, Speroni E, Costa S, Galvano G, De Lorenzo A, Bacchelli V, Fogliano V, Galvano F (2005) Mol Nutr Food Res 49:1129–1135

    Article  CAS  Google Scholar 

  27. Gardner PT, White TAC, McPhail DB, Duthie GG (2000) Food Chem 68:471–474

    Article  CAS  Google Scholar 

  28. Goyle A, Ojha P (1998) J Food Sci Technol 35(4):346–348

    CAS  Google Scholar 

  29. John JH, Ziebland S, Yudkin P, Roe LS, Neil HAW (2002) Lancet 359:1969–1974

    Article  CAS  Google Scholar 

  30. Kennedy JF, Rivera ZS, Lloyd LL, Warner FP, Jumel K (1992) Food Chem 45:327–331

    Article  CAS  Google Scholar 

  31. Kim SJ, Kim S (2001) Int J Solids Struct 38(8):1311–1325

    Article  Google Scholar 

  32. Kim KN, Pie JE, Park JH, Park YH, Kim HW, Kim MK (2006) J Nutr Biochem 17:454–462

    Article  CAS  Google Scholar 

  33. Klimczak I, Malecka M, Szlachta M, Gliszczynska-Swiglo A (2007) J Food Comp Anal 20:313–322

    Article  CAS  Google Scholar 

  34. McAllister JW (1980) Citrus nutrition and quality. American Chemical Society, Washington DC, pp 291–377

    Google Scholar 

  35. Min S, Jin ZT, Zhang QH (2003) J Agric Food Chem 51:3338–3344

    Article  CAS  Google Scholar 

  36. Min S, Evrendilek GA, Zhang HQ (2007) IEEE Trans Plasma Sci 35(1):59–73

    Article  CAS  Google Scholar 

  37. Murata M, Shinoda Y, Homma S (2002) Int Congr Ser 1245:459–460

    Article  Google Scholar 

  38. Nagy S (1980) J Agric Food Chem 25:602–604

    Google Scholar 

  39. Polydera AC, Stoforos NG, Taoukis PS (2003) J Food Eng 60:21–29

    Article  Google Scholar 

  40. Pothakamury UR, Barbosa-Cánovas GV, Swanson BG, Spence KD (1997) Food Sci Technol Int 3:113–121

    Article  Google Scholar 

  41. Qiu X, Sharma S, Tuhela L, Jia M, Zhang Q (1998) Am Soc Agric Eng 41(4):1069–1074

    Google Scholar 

  42. Rivas A, Rodrigo D, Martínez A, Barbosa-Cánovas GV, Rodrigo M (2006) LWT Food Sci Technol 10:1163–1170

    Article  CAS  Google Scholar 

  43. Robertson GL, Samaniego CML (1986) J Food Sci 51:184–187

    Article  CAS  Google Scholar 

  44. Rodrigo D, Martínez A, Harte F, Barbosa-Cánovas GV, Rodrigo M (2001) J Food Prot 64:259–263

    CAS  Google Scholar 

  45. Rodrigo D, Barbosa-Cánovas GV, Martínez A, Rodrigo M (2003) J Food Prot 66:2336–2342

    CAS  Google Scholar 

  46. Rodrigo D, Arranz JI, Koch S, Frígola A, Rodrigo MC, Esteve MJ, Calvo C, Rodrigo M (2003) J Food Sci 68(6):2111–2116

    Article  CAS  Google Scholar 

  47. Roig MG, Bello JF, Rivera ZS, Kennedy JF (1999) Food Res Int 32:609–619

    Article  CAS  Google Scholar 

  48. Sánchez-Moreno C, Plaza L, de Ancos B, Cano P (2003) J Sci Food Agric 83:430–439

    Article  CAS  Google Scholar 

  49. Sánchez-Moreno C, Plaza L, Elez-Martínez P, de Ancos B, Martín-Belloso O, Cano P (2005) J Agric Food Chem 53:4403–4409

    Article  CAS  Google Scholar 

  50. Selma MV, Salmerón MC, ValeroM, Fernández PS (2004) Food Microbiol 21(5):519–525

    Article  Google Scholar 

  51. Shivashankara KS, Isobe S, Al-Haq MI, Takenaka M, Shiina T (2004) J Agric Food Chem 52:1281–1286

    Article  CAS  Google Scholar 

  52. Torregrosa F, Cortés C, Esteve MJ, Frígola A (2005) J Agric Food Chem 53(24):9519–9525

    Article  CAS  Google Scholar 

  53. Torregrosa F, Esteve MJ, Frígola A, Cortés C (2006) J Food Eng 73:339–345

    Article  CAS  Google Scholar 

  54. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Chem Biol Interact 160:1–40

    Article  CAS  Google Scholar 

  55. Yeom HW, Streaker CB, Zhang QH, Min DB (2000) J Agric Food Chem 48:4597–4605

    Article  CAS  Google Scholar 

  56. Zerdin K, Rooney ML, Vermuë J (2003) Food Chem 82:387–395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was undertaken with funds of the Spanish Ministry of Science and Technology (AGL-2003-05236-C02-02 project and AGL-2006-13320-C03-03 project), and Ayudas a Grupos de Investigación de la Generalitat Valenciana (Grupos 03/147). Clara Cortés holds an award from the Generalitat Valenciana (Spain). We would like to thank IATA (CSIC) for allowing us to use its installations and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Frígola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés, C., Esteve, M.J. & Frígola, A. Effect of refrigerated storage on ascorbic acid content of orange juice treated by pulsed electric fields and thermal pasteurization. Eur Food Res Technol 227, 629–635 (2008). https://doi.org/10.1007/s00217-007-0766-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0766-x

Keywords

Navigation