Skip to main content
Log in

Wide-scope screening of pesticides in fruits and vegetables using information-dependent acquisition employing UHPLC-QTOF-MS and automated MS/MS library searching

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper presents an application of ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) for simultaneous screening and identification of 427 pesticides in fresh fruit and vegetable samples. Both full MS scan mode for quantification, and an artificial-intelligence-based product ion scan mode information-dependent acquisition (IDA) providing automatic MS to MS/MS switching of product ion spectra for identification, were conducted by one injection. A home-in collision-induced-dissociation all product ions accurate mass spectra library containing more than 1700 spectra was developed prior to actual application. Both qualitative and quantitative validations of the method were carried out. The result showed that 97.4 % of the pesticides had the screening detection limit (SDL) less than 50 μg kg−1 and more than 86.7 % could be confirmed by accurate MS/MS spectra embodied in the home-made library. Meanwhile, calibration curves covering two orders of magnitude were performed, and they were linear over the concentration range studied for the selected matrices (from 5 to 500 μg kg−1 for most of the pesticides). Recoveries between 80 and 110 % in four matrices (apple, orange, tomato, and spinach) at two spiked levels, 10 and 100 μg kg−1, was 88.7 or 86.8 %. Furthermore, the overall relative standard deviation (RSD, n = 12) for 94.3 % of the pesticides in 10 μg kg−1 and 98.1 % of the pesticides in 100 μg kg−1 spiked levels was less than 20 %. In order to validate the suitability for routine analysis, the method was applied to 448 fruit and vegetable samples purchased in different local markets. The results show 83.3 % of the analyzed samples have positive findings (higher than the limits of identification and quantification), and 412 commodity-pesticide combinations are identified in our scope. The approach proved to be a cost-effective, time-saving and powerful strategy for routine large-scope screening of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94. doi:10.1038/nature10947.

    Article  CAS  Google Scholar 

  2. Popp J, Peto K, Nagy J. Pesticide productivity and food security. A review. Agron Sustain Dev. 2013;33(1):243–55. doi:10.1007/s13593-012-0105-x.

    Article  Google Scholar 

  3. United States Department of Agriculture. Pesticide data program (PDP). http://www.ams.usda.gov/AMSv1.0/pdp. Accessed 10 Apr 2016.

  4. U.S. Food and Drug Administration. Pesticide Program Residue Monitoring. http://www.fda.gov/food/foodborneillnesscontaminants/pesticides/ucm2006797.htm. Accessed 10 Apr 2016.

  5. Health Canada. Maximum Residue Limits for Pesticides. http://www.hc-sc.gc.ca/cps-spc/pest/part/protect-proteger/food-nourriture/mrl-lmr-eng.php. Accessed 17 Apr 2016.

  6. Canadian Food Inspection Agency (CFIA). National Chemical Residue Monitoring Program 2012–2013 Report. http://www.inspection.gc.ca/food/chemical-residues-microbiology/chemical-residues/eng/1324258929171/1324264923941. Accessed 17 Apr 2016.

  7. EU-wide Pesticide Residues Monitoring. http://ec.europa.eu/food/fvo/specialreports/pesticides_index_en.htm. Accessed 10 Dec 2015.

  8. EU - Pesticides database. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database. Accessed 10 Apr 2016.

  9. National food safety standard - Maximum residue limits for pesticides in food. http://www.nhfpc.gov.cn/ewebeditor/uploadfile/2014/04/20140409103007373.pdf. Accessed 10 Apr 2016.

  10. Pang GF, Liu YM, Fan CL, Zhang JJ, Cao YZ, Li XM, et al. Simultaneous determination of 405 pesticide residues in grain by accelerated solvent extraction then gas chromatography-mass spectrometry or liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2006;384(6):1366–408. doi:10.1007/s00216-005-0237-9.

    Article  CAS  Google Scholar 

  11. Pang GF, Fan CL, Liu YM, Cao YZ, Zhang JJ, Li XM, et al. Determination of residues of 446 pesticides in fruits and vegetables by three-cartridge solid-phase extraction-gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. J AOAC Int. 2006;89(3):740–71.

    CAS  Google Scholar 

  12. Lian YJ, Pang GF, Shu HR, Fan CL, Liu YM, Feng J, et al. Simultaneous determination of 346 multiresidue pesticides in grapes by PSA-MSPD and GC-MS-SIM. J Agric Food Chem. 2010;58(17):9428–53. doi:10.1021/jf1019592.

    Article  CAS  Google Scholar 

  13. Anastassiades M, Maštovská K, Lehotay SJ. Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. J Chromatogr A. 2003;1015(1–2):163–84. doi:10.1016/S0021-9673(03)01208-1.

    Article  CAS  Google Scholar 

  14. Maštovská K, Lehotay SJ. Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues. J Chromatogr A. 2004;1040(2):259–72. doi:10.1016/j.chroma.2004.04.017.

    Article  Google Scholar 

  15. Hayward DG, Wong JW, Shi F, Zhang K, Lee NS, DiBenedetto AL, et al. Multiresidue pesticide analysis of botanical dietary supplements using salt-out acetonitrile extraction, solid-phase extraction cleanup column, and gas chromatography–triple quadrupole mass spectrometry. Anal Chem. 2013;85(9):4686–93. doi:10.1021/ac400481w.

    Article  CAS  Google Scholar 

  16. Mol HGJ, Zomer P, García López M, Fussell RJ, Scholten J, de Kok A, et al. Identification in residue analysis based on liquid chromatography with tandem mass spectrometry: experimental evidence to update performance criteria. Anal Chim Acta. 2015;873:1–13. doi:10.1016/j.aca.2015.03.007.

    Article  CAS  Google Scholar 

  17. Pareja L, Cesio V, Heinzen H, Fernandez-Alba AR. Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC-MS/MS. Talanta. 2011;83(5):1613–22. doi:10.1016/j.talanta.2010.11.052.

    Article  CAS  Google Scholar 

  18. Tomasini D, Sampaio MRF, Caldas SS, Buffon JG, Duarte FA, Primel EG. Simultaneous determination of pesticides and 5-hydroxymethylfurfural in honey by the modified QuEChERS method and liquid chromatography coupled to tandem mass spectrometry. Talanta. 2012;99:380–6. doi:10.1016/j.talanta.2012.05.068.

    Article  CAS  Google Scholar 

  19. Mol HGJ, van Dam RCJ, Steijger OM. Determination of polar organophosphorus pesticides in vegetables and fruits using liquid chromatography with tandem mass spectrometry: selection of extraction solvent. J Chromatogr A. 2003;1015(1–2):119–27. doi:10.1016/S0021-9673(03)01209-3.

    Article  CAS  Google Scholar 

  20. Picó Y, Blasco C, Font G. Environmental and food applications of LC–tandem mass spectrometry in pesticide-residue analysis: an overview. Mass Spectrom Rev. 2004;23(1):45–85. doi:10.1002/mas.10071.

    Article  Google Scholar 

  21. Pang GF, Fan CL, Liu YM, Cao YZ, Zhang JJ, Fu BL, et al. Multi-residue method for the determination of 450 pesticide residues in honey, fruit juice and wine by double-cartridge solid-phase extraction/gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Food Addit Contam. 2006;23(8):777–810. doi:10.1080/02652030600657997.

    Article  CAS  Google Scholar 

  22. Gomez-Ramos MM, Ferrer C, Malato O, Aguera A, Fernandez-Alba AR. Liquid chromatography-high-resolution mass spectrometry for pesticide residue analysis in fruit and vegetables: screening and quantitative studies. J Chromatogr A. 2013;1287:24–37. doi:10.1016/j.chroma.2013.02.065.

    Article  CAS  Google Scholar 

  23. Ferrer I, Fernandez-Alba A, Zweigenbaum JA, Thurman EM. Exact-mass library for pesticides using a molecular-feature database. Rapid Commun Mass Spectrom. 2006;20(24):3659–68. doi:10.1002/rcm.2781.

    Article  CAS  Google Scholar 

  24. Thurman EM, Ferrer I, Zavitsanos P, Zweigenbaum JA. Analysis of isobaric pesticides in pepper with high-resolution liquid chromatography and mass spectrometry: complementary or redundant? J Agric Food Chem. 2013;61(10):2340–7. doi:10.1021/jf304642g.

    Article  CAS  Google Scholar 

  25. Gomez-Ramos MD, Rajski L, Heinzen H, Fernandez-Alba AR. Liquid chromatography Orbitrap mass spectrometry with simultaneous full scan and tandem MS/MS for highly selective pesticide residue analysis. Anal Bioanal Chem. 2015;407(21):6317–26. doi:10.1007/s00216-015-8709-z.

    Article  CAS  Google Scholar 

  26. Lacorte S, Fernandez-Albaz AR. Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass Spectrom Rev. 2006;25(6):866–80. doi:10.1002/mas.20094.

    Article  CAS  Google Scholar 

  27. Besil N, Ucles S, Mezcua M, Heinzen H, Fernandez-Alba AR. Negative chemical ionization gas chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry and automated accurate mass data processing for determination of pesticides in fruit and vegetables. Anal Bioanal Chem. 2015;407(21):6327–43. doi:10.1007/s00216-015-8514-8.

    Article  CAS  Google Scholar 

  28. Yoshioka N, Akiyama Y, Matsuoka T, Mitsuhashi T. Rapid determination of five post-harvest fungicides and metabolite in citrus fruits by liquid chromatography/time-of-flight mass spectrometry with atmospheric pressure photoionization. Food Control. 2010;21(2):212–6. doi:10.1016/j.foodcont.2009.04.001.

    Article  CAS  Google Scholar 

  29. Cervera MI, Portolés T, López FJ, Beltrán J, Hernández F. Screening and quantification of pesticide residues in fruits and vegetables making use of gas chromatography–quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization. Anal Bioanal Chem. 2014:1–13. doi:10.1007/s00216-014-7853-1.

  30. Garcia-Reyes JF, Ferrer I, Thurman EM, Molina-Diaz A, Fernandez-Alba AR. Searching for non-target chlorinated pesticides in food by liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(19):2780–8. doi:10.1002/rcm.2127.

    Article  CAS  Google Scholar 

  31. Mezcua M, Malato O, García-Reyes JF, Molina-Díaz A, Fernández-Alba AR. Accurate-mass databases for comprehensive screening of pesticide residues in food by fast liquid chromatography time-of-flight mass spectrometry. Anal Chem. 2009;81(3):913–29. doi:10.1021/ac801411t.

    Article  CAS  Google Scholar 

  32. Gomez MJ, Gomez-Ramos MM, Malato O, Mezcua M, Fernandez-Alba AR. Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass database. J Chromatogr A. 2010;1217(45):7038–54. doi:10.1016/j.chroma.2010.08.070.

    Article  CAS  Google Scholar 

  33. Diaz R, Ibanez M, Sancho JV, Hernandez F. Qualitative validation of a liquid chromatography-quadrupole-time of flight mass spectrometry screening method for organic pollutants in waters. J Chromatogr A. 2013;1276:47–57. doi:10.1016/j.chroma.2012.12.030.

    Article  CAS  Google Scholar 

  34. Diaz R, Ibanez M, Sancho JV, Hernandez F. Target and non-target screening strategies for organic contaminants, residues and illicit substances in food, environmental and human biological samples by UHPLC-QTOF-MS. Anal Methods. 2012;4(1):196–209. doi:10.1039/c1ay05385j.

    Article  CAS  Google Scholar 

  35. Martinez Bueno MJ, Ulaszewska MM, Gomez MJ, Hernando MD, Fernandez-Alba AR. Simultaneous measurement in mass and mass/mass mode for accurate qualitative and quantitative screening analysis of pharmaceuticals in river water. J Chromatogr A. 2012;1256:80–8. doi:10.1016/j.chroma.2012.07.038.

    Article  CAS  Google Scholar 

  36. Pavlic M, Libiseller K, Oberacher H. Combined use of ESI–QqTOF-MS and ESI–QqTOF-MS/MS with mass-spectral library search for qualitative analysis of drugs. Anal Bioanal Chem. 2006;386(1):69–82. doi:10.1007/s00216-006-0634-8.

    Article  CAS  Google Scholar 

  37. Diaz R, Ibanez M, Sancho JV, Hernandez F. Building an empirical mass spectra library for screening of organic pollutants by ultra-high-pressure liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2011;25(2):355–69. doi:10.1002/rcm.4860.

    Article  CAS  Google Scholar 

  38. Zhang K, Wong JW, Yang P, Hayward DG, Sakuma T, Zou Y, et al. Protocol for an electrospray ionization tandem mass spectral product ion library: development and application for identification of 240 pesticides in foods. Anal Chem. 2012;84(13):5677–84. doi:10.1021/ac300844d.

    Article  CAS  Google Scholar 

  39. Zhao Z, Shi Z, Kang J, Peng X, Cao X, Fan C, et al. Rapid screening and confirmation of 281 pesticide residues in apples, tomatos and cabbages by liquid chromatography/ quadrupole time-of-flight mass spectrometry. Chin J Chromatogr. 2013;31(4):372–9.

    Article  CAS  Google Scholar 

  40. Wang Z, Chang Q, Kang J, Cao Y, Ge N, Fan C, et al. Screening and identification strategy for 317 pesticides in fruits and vegetables by liquid chromatography-quadrupole time-of-flight high resolution mass spectrometry. Anal Methods. 2015;7(15):6385–402. doi:10.1039/C5AY01478F.

    Article  CAS  Google Scholar 

  41. Malato O, Lozano A, Mezcua M, Agueera A, Fernandez-Alba AR. Benefits and pitfalls of the application of screening methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A. 2011;1218(42):7615–26. doi:10.1016/j.chroma.2011.06.110.

    Article  CAS  Google Scholar 

  42. Decaestecker TN, Vande Casteele SR, Wallemacq PE, Van Peteghem CH, Defore DL, Van Bocxlaer JF. Information-dependent acquisition-mediated LC-MS/MS screening procedure with semiquantitative potential. Anal Chem. 2004;76(21):6365–73. doi:10.1021/ac0492315.

    Article  CAS  Google Scholar 

  43. Document No SANCO/12571/2013. Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. http://www.eurlpesticides.eu/library/docs/allcrl/AqcGuidance_Sanco_2013_12571.pdf (2013). Accessed 22 Aug 2016.

  44. Document No SANCO/12495/2011. Method validation and quality control procedures for pesticide residues analysis in food and feed. http://www.eurlpesticides.eu/library/docs/allcrl/AqcGuidance_Sanco_2011_12495.pdf (2011). Accessed 22 Aug 2016.

  45. Lehotay SJ, Mastovska K, Amirav A, Fialkov AB, Martos PA, de Kok A, et al. Identification and confirmation of chemical residues in food by chromatography-mass spectrometry and other techniques. Trends Anal Chem. 2008;27(11):1070–90. doi:10.1016/j.trac.2008.10.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance of the National Key Technology Research and Development Program (NO. 2012BAD29B01) and the Key Basic Research Program (NO. 2015FY111200) of the Ministry of Science and Technology, PRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Fang Pang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Cao, Y., Ge, N. et al. Wide-scope screening of pesticides in fruits and vegetables using information-dependent acquisition employing UHPLC-QTOF-MS and automated MS/MS library searching. Anal Bioanal Chem 408, 7795–7810 (2016). https://doi.org/10.1007/s00216-016-9883-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9883-3

Keywords

Navigation